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ABSTRACT 

There has been an extraordinary decrease in order execution time on stock exchanges in the 
past two decades. A related question is whether there has been a similar reduction in orders of 
magnitude for the lengths of the lead lag time between stocks. If the answer is affirmative, and 
the lengths of the lead lag time have long fallen below the human reaction time, algorithms have 
taken over information diffusion from one stock to another. Otherwise, humans continue to be 
in authority. In this study, the lengths of the lead lag time within pairs of stocks of large US 
companies are estimated using the Hayashi-Yoshida estimator, for each year from 2000 to 2022. 
We first construct stock pairs, with each pair containing two stocks from the same industrial 
sector. The median length of the lead lag time for each year shows a general trend of decline over 
time. From 2000 to 2005, the median lengths are a few seconds. By 2021 and 2022, they are less 
than 10 milliseconds. We also study a second construct in which stock pairs are randomly formed, 
but each pair contains stocks from two different sectors. The median length of the lead lag time 
for each year shows a decline over time, similar to the first construct. Overall, the lengths of the 
lead lag time in the second construct are not remarkably longer than those in the first construct. 
This shows that being in the same sector, at the tick-by-tick level, is not an important factor in 
determining the length of the lead lag time between stocks. 

JEL Classification: G12; G14; G19

Keywords: Hayashi-Yoshida estimator, price discovery, cross-correlation, statistical arbitrage, 
high-frequency trading.

1. INTRODUCTION

The past two decades have seen a phenomenal increase in order execution speed, and 
a decrease in order execution time, on stock exchanges. In 2000, the average execution time was 
approximately 20 seconds on the New York Stock Exchange, whereas by 2010, it reduced to 
around 1 second (Haldane, 2011). It is now represented in microseconds on the fastest exchanges.
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The question is whether there has been a similar reduction in orders of magnitude for the 
lengths of the lead lag time between stocks. For example, a short time after news on Chevron 
Corporation impacts its stock price, investors may realize that the news has repercussions on 
other stocks in the energy sector. Therefore, the length of the lead lag time between stock prices 
is a reflection of the time required to digest information. However, the duration of the lead lag 
time could potentially shed light on the nature of the information processing mechanism. If we 
indeed see orders of magnitude of lead lag time length reduction over the past two decades, the 
information is processed via automation by computers and algorithms. Alternatively, this process 
likely involves human decision making by traders and investors. 

In this study, we use tick-by-tick data on eight pairs of significant US stocks from eight distinct 
industrial sectors and quantify the length of the lead lag time within each pair for each year 
between 2000 and 2022 in order to examine the evolution of lead lag periods between individual 
stocks over the past two decades. To study the impact of being in the same sector on the length 
of the lead lag time, we also randomly reassign the stocks into pairs from different sectors and 
remeasure the lengths of the lead lag time across the two decades.

This work provides substantial additions to the body of knowledge that already exists. The 
majority of lead lag literature focuses on the direction of the lead lag connection rather than the 
lengths of the lead lag period. How long is the lead lag duration on average for big liquid U.S. 
stocks? To the best of our knowledge, there has been no answer to this question in the current 
literature prior to this paper.

This research provided an answer for each year from 2000 until 2022. We are not aware of any 
prior investigation utilizing tick-by-tick data throughout such a wide time span. As it turns out, 
lead lag durations have a tendency to decrease with time. This finding has practical implications for 
academics who compare the outcomes of lead lag studies conducted over different time periods.

Eventually, this paper also answered the question posed above on whether the magnitude of 
the lead lag time points to information processing via humans versus via computers. Computers 
dominate, but occasionally humans may still play a role. This and other findings in this study 
have practical implications for practitioners. For instance, when a mutual fund wishes to liquidate 
a big position, does employing human traders optimize the net liquidation proceeds, or does 
this approach leave money on the table for high-frequency trading algorithms? When a hedge 
fund employs high-frequency lead lag statistical arbitrage algorithms, how frequently may it 
discover “anomalies” that represent potential profit opportunities? A peek at the three tables in 
this article and a count of the frequencies of “anomalies” in the tables may provide a general 
notion. Additionally, should these lead lag arbitrage algorithms focus on stock pairings from the 
same sector or from different sectors? In this paper, we have studied both the intra-sector and 
inter-sector cases.

The rest of the paper is organized as follows. Section 2 provides a review of the literature 
on lead lag studies. Section 3 introduces the data and the research methodology based on the 
Hayashi-Yoshida estimator. Section 4 presents and discusses the results. Section 5 concludes.

2. LITERATURE REVIEW 

The lead lag relationship has been examined for different parts of the financial markets. 
Hasbrouck (2003) analyzes the correlation between futures and exchange-traded funds (ETF) 

for stock indices and finds that the E-mini NASDAQ 100 and S&P 500 index futures have the 
highest price discovery. Price discovery is “the impounding of new information into the security 
price” (Hasbrouck, 1995). Most of the price discovery studies point out the direction of the lead 
lag relationship, but they rarely assess the exact lead lag duration. This is not surprising given 
that neither of the two primary approaches for price discovery research, the information share 
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methodology of Hasbrouck (1995) and the common factor component share methodology of 
Gonzalo and Granger (1995), is designed to measure the length of the lead lag time.

There is an extensive body of literature on lead lag research from the perspective of price 
discovery. Sapp (2002) studies price discovery in the spot foreign exchange market. Chakravarty, 
Gulen, and Mayhew (2004) investigate the role of option markets in stock price discovery. 
Mizrach and Neely (2008) examine how the futures markets contribute to the US Treasury price 
discoveries. There is also work on whether New York or London leads in the discovery of gold 
prices (Lucey, Larkin, & O’Connor, 2013) and on the stock price co-movements between Europe 
and the United States (Ben Ameur et al., 2018). More recently, Chen et al. (2021) find that regular 
index futures in Taiwan contribute more to price discovery than the mini index futures. 

Recently, cryptocurrencies have become a focus of lead lag research. For example, Ji et al. 
(2019) examine six large cryptocurrencies, and conclude that return shocks from Bitcoin and 
Litecoin affect the rest the most. Using a wavelet approach, Mensi et al. (2019) find that Bitcoin 
leads Dash, Monero, and Ripple in the time frequency space. Corbet et al. (2018) conclude that 
“Bitcoin prices affect both Ripple (28.37%) and Lite (42.3%), but Ripple and Lite have limited 
influence on Bitcoin”, and that Bitcoin clearly leads other cryptocurrencies in price movements. 
Ciaian, Rajcaniova, and Kancs (2018) investigate Bitcoin and 16 alternative cryptocurrencies, and 
find that Bitcoin price shocks impact the prices of 15 out of the 16 alternative cryptocurrencies 
in the short run. Using the VAR-based approach of Diebold and Yilmaz (2009), Koutmos (2018) 
analyzes 18 major cryptocurrencies and concludes that Bitcoin is the leader of return spillover to 
the rest. Most of the cryptocurrency lead lag studies use daily data.

Wang et al. (2022) investigate the lead lag link between the VIXs of individual stocks and 
the S&P 500 VIX. Xu and Yin (2017) probe stock market index volatility and how it relates to the 
index ETF volumes. Tolikas (2018) study the lead lag connection between the stock and the bond 
markets. Ballester and González-Urteaga (2020) examine the lead lag relationship between the 
sovereign credit default swap market and the stock market.

There are a few distinguishing factors between this study and the previous literature. In the 
bulk of existing studies, the lengths of the lead lag time are not measured. This paper is intended 
to quantify the lengths of the lead lag time. The majority of published works utilize daily or 
other low-frequency data. This study utilizes tick-by-tick data, sometimes known as ultra-high-
frequency data, as there is no higher frequency than tick-by-tick data. The final distinctive feature 
of this study is that it analyzes the evolution of the lengths of the lead lag time over a period 
of 23 years.

3. DATA AND METHODOLOGY 

Tick-by-tick data are purchased from Tick Data LLC, an authorized distributor of the New 
York Stock Exchange (NYSE) TAQ data. In comparable research, it is typical to utilize quotes 
rather than trade prices (see, for example, Huth & Abergel, 2014; Anderson, 2016). As explained 
in Anderson (2016), the possibility of the bid-ask bounce effect in trade prices is one argument 
for using quotes. According to Blume and Goldstein (1997), the NYSE dominates other U.S. 
exchanges in terms of initiating quote revisions and displaying the best quote prices. Only quotes 
from the NYSE during its regular trading hours are utilized in this study. The average of the 
bid and ask prices, or the mid-quote, is used as the observed price. When multiple quotes arrive 
exactly at the same time, their average is utilized.

Due to the vast amount of data involved, it is common for market microstructure research 
employing tick data to focus on a period of a few months. Hasbrouck (2003), for instance, 
examines the sample period between March 2000 and May 2000. Huth and Abergel (2014), for 
example, utilize data from March 2010 to May 2010 for their research. We use the month of May 
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in each year from 2000 to 2022. We pick 16 large liquid US stocks in eight different sectors to 
form eight pairs, with each pair being two stocks in the same sector: Coca-Cola (ticker symbol: 
KO) and Pepsi (PEP), Verizon (VZ) and AT&T (T), IBM (IBM) and HP (HPQ), Walmart (WMT) 
and Home Depot (HD), Raytheon (RTX) and Boeing (BA), JPMorgan (JPM) and Morgan Stanley 
(MS), Chevron (CVX) and Exxon Mobile (XOM), Pfizer (PFE) and Merck(MRK).

Using tick data for a study, a massive volume of data to work with is only a small portion of 
the difficulty. The fundamental issue is the asynchronous arrival of observations. The majority of 
time series econometrics tools deal with data that arrives at regularly spaced time intervals: each 
month, each day, each hour, etc. Casting high frequency asynchronous tick data into regularly 
spaced time intervals causes problems in measuring the lengths of the lead lag time (Finucane, 
1999; Zhang, 2011).

Although it is possible to integrate the two asynchronous time series using a regression-based 
method (Finucane, 1999), we opt to employ a technique based on the cross-correlation estimator 
of Hayashi and Yoshida (2005). A significant advantage of the Hayashi-Yoshida estimator is that 
it reveals unambiguously the direction of the lead lag relationship as well as the length of the lead 
lag time.

In lead lag research, Huth and Abergel (2014), Dao, McGroarty, and Urquhart (2018), and 
Schei (2019) have utilized the Hayashi-Yoshida estimator. In 2018, bitcoin transactions on 
Bitfinex were 12 seconds ahead of those on Kraken, according to one of Schei’s (2019) findings. 
To validate our implementation of the Hayashi-Yoshida estimator, we conduct the same analysis 
on the 2018 data and are able to duplicate Schei’s findings to the second.

Below is a summary of how the length of the lead lag time is estimated. Consider stochastic 
differential equations to characterize the price dynamics of stocks P and Q:
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Hoffmann, Rosenbaum, and Yoshida (2014) demonstrate that a lag time can be introduced to 
the time stamps of Q. The lagged Q can be correlated with the original P. Among all the different 
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lengths of the lag time, the one that maximizes the correlation is the actual length of the lead lag 
time between the two stocks. 

Mathematically, let 

 Q Q*
t to = o+^ h  (5).

Then, P leads Q by

 ,argmax P Q*T T t o1 1o-
t ^^ hh (6).

In our implementation, we test every second between -120 and 120 seconds for the lead 
lag duration. The time stamps of the original data are expressed in seconds from 2000 to 2005, 
milliseconds from 2006 to 2015 , microseconds from 2016 to 2018, and nanoseconds from 2019 
to 2022. When the estimated length of the lead lag time is small, and the time stamp provides 
sufficient resolution, we repeat the estimation process with a step size of one order of magnitude 
finer. For example, when the time stamps are in units of milliseconds, and the first round of 
estimation with the [-120, 120] window yields 1 second for the length of the lead lag time, we 
run the estimation again from -12 seconds to 12 seconds with a smaller step size of 0.1 seconds. 
Similarly, if the situation warrants, we could run another round from -1.2 seconds to 1.2 seconds 
with a step size of 0.01 seconds, and so on.

4. RESULTS

Table 1 displays the estimation outcomes. For example, the cell in the very first row and the 
first column indicates that WMT leads HD by -8 seconds in May 2000, which means that HD 
actually leads WMT by 8 seconds. 

There are significant variations in the lead lag duration both across different years and across 
different stock pairs. In the first column of Table 1, for instance, the lengths of the lead lag time 
between WMT and HD exhibit a general downward trend from 2000 to 2022. For both 2009 and 
2011, the lengths of the lead lag time are measured in tens of milliseconds. Nonetheless, for the 
intervening year, 2010, the length of the lead lag time is a stunning 23 seconds.

Table 1
The lengths of the lead lag time between stocks within the same sector

Year
WMT 
leads  
HD

CVX 
leads 
XOM

MRK 
leads 
PFE

PEP  
leads  
KO

RTX 
leads  
BA

MS  
leads 
JPM

HPQ 
leads 
IBM

VZ  
leads  

T

Median  
of  

|Time|

2000   -8s   1s   8s   -2s   -7s   -3s   9s   2s   5s

2001   5s   -9s   6s   1s  -39s   6s   -4s   3s   5.5s

2002   -4s   -4s   3s   -2s   -1s   0s  -17s   0s   2.5s

2003   -2s   -4s   0s   1s   -3s   1s   4s   0s   1.5s

2004   1s   1s   0s   0s   0s   1s   1s   1s   1s

2005   1s   1s   -2s   0s   1s   2s   1s   0s   1s

2006 300ms 550ms  240ms 115ms 520ms  29ms   1.3s 570ms 410ms

2007  -90ms  70ms  -74ms -100ms -120ms   0ms  -70ms -140ms  82ms

2008  -41ms  16ms 100ms  95ms  23ms   -6ms  -85ms  80ms  60.5ms
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Year
WMT 
leads  
HD

CVX 
leads 
XOM

MRK 
leads 
PFE

PEP  
leads  
KO

RTX 
leads  
BA

MS  
leads 
JPM

HPQ 
leads 
IBM

VZ  
leads  

T

Median  
of  

|Time|

2009  23ms   0ms 140ms 104ms  -22ms  56ms  38ms 140ms  47ms

2010  23s   -9ms  -10s   9ms   7ms  -16ms  -39ms   -9ms  12.5ms

2011  -49ms   1ms  85ms  37ms   -5ms  25ms  -70ms   8ms  31ms

2012   2ms   2ms  31ms  28ms  -12ms  33ms -390ms  70ms  29.5ms

2013   -1ms   2ms  97ms  23ms   0ms   2ms  -58ms   -3ms   2.5ms

2014   5ms   0ms  11ms   4ms   1ms   1ms -630ms   -1ms   2.5ms

2015   0ms   1ms   1ms   1ms   -5ms   -1ms  -22ms   0ms   1ms

2016   -3ms   1.3ms   2.8ms  16ms   -2.6ms   -3.2ms -210ms   2.2ms   2.9ms

2017   -3ms   2ms  14ms  5ms   -2.3ms   -1.2ms   -1.05s   -2.8ms   2.55ms

2018  42ms   2.1ms  7ms -680ms   8ms   -2.3ms -120ms   5.3ms   7.5ms

2019   -0.6ms   8ms   9.8ms 300ms   -1.6ms   -1.3ms -130ms   5.1ms   6.55ms

2020   2.3ms   7ms  29ms 130ms   -1.8ms   -1.3ms  -54ms   4ms   5.5ms

2021   1.2ms   0.4ms   1.9ms  13ms   0.1ms   -0.9ms  -43ms   -1.1ms   1.15ms

2022   -8.3ms   0.9ms   1.1ms  18ms   -0.7ms   -0.1ms   -9ms   -0.3ms   1ms

Note: The length of each lead lag time is measured in seconds(s) or milliseconds (ms).

Source: Author’s own calculation.

Table 2
The lengths of the lead lag time between stocks in different sectors

Year WMT 
leads IBM

CVX 
leads 
PFE

MRK 
leads 
JPM

KO  
leads 
XOM

RTX 
leads  
HD

MS  
leads  

T

HPQ 
leads  
PEP

VZ  
leads  
BA

Median 
of  

|Time|

2000   0s  17s   3s  -3s  18s  2s   -3s  11s   3s

2001   0s   3s   2s  6s   -3s  5s  -16s   -1s   3s

2002   9s   2s   -4s  6s   -3s  -2s   -5s   2s   3.5s

2003   2s   1s   1s  0s   0s  0s   1s   -1s   1s

2004   1s   1s   1s  1s   1s  0s   1s   1s   1s

2005   1s   2s   0s  2s   1s  1s   0s   0s   1s

2006  63ms 810ms 105ms  1.7s 720ms  1.3s 390ms  60ms 555ms

2007  -10ms -230ms  -99ms 24ms  27ms  0ms 130ms  -18ms  25.5ms

2008 -170ms  27ms   -9ms -54ms 180ms 52ms  -68ms  12ms  53ms

2009   0ms 380ms  80ms -35ms   8ms 46ms  -59ms   -1ms  40.5ms

2010  -62ms  -49ms  -10ms -3ms  44ms 17ms  13ms  6ms  15ms

2011  -60ms  93ms   9ms 13ms  11ms 69ms  -64ms  -55ms  57.5ms

2012  -80ms 220ms  52ms  -8ms  60ms 55ms  -41ms  -78ms  57.5ms

2013   -8ms  28ms  35ms -32ms   1ms 12ms  -87ms  -19ms  3.5ms

Table 1 – continued
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Year WMT 
leads IBM

CVX 
leads 
PFE

MRK 
leads 
JPM

KO  
leads 
XOM

RTX 
leads  
HD

MS  
leads  

T

HPQ 
leads  
PEP

VZ  
leads  
BA

Median 
of  

|Time|

2014   -9ms  15ms   6ms -11ms  14ms -22ms  -47ms  -41ms  14.5ms

2015  -25ms   4ms   0ms  -1ms   1ms  -1ms   0ms  -16ms   1ms

2016  -31ms  29ms   2.4ms  -7.9ms   1.5ms  -1.9ms  -15ms -130ms  11.45ms

2017  -18ms  58ms   0.52ms  1.2ms   0.12ms 62s   -0.8s  -24ms  21ms

2018   1.2ms  49ms   -3.3ms  -1.4ms  51ms  9.2ms  -64s   -5ms   7.1ms

2019   -1ms  29ms   -0.97ms  -11ms   1.6ms  12ms -110s  -26ms  11.5ms

2020   -1.1ms  60ms   -0.76ms  0.8ms  -20ms  1.5ms   -0.5s   -5.4ms   3.45ms

2021   1.3ms   7.4ms   1.3ms  0.47ms   -1.2ms   0.39ms -30s   -7.2ms   1.3ms

2022   0.028ms   5.1ms   -1.9ms  1.3ms  -14ms 28ms  -29ms  -17ms   9.55ms

Note: The length of each lead lag time is measured in seconds(s) or milliseconds (ms).

Source: Author’s own calculation.

One scenario that could explain why this occurs is that when a large mutual fund or hedge fund 
wants to acquire or sell a substantial position in a stock, the process must often take at least a few 
months. If a large fund wants to acquire HD and employs human traders to do so, and if WMT 
is one of the stocks the human traders monitor, WMT can easily lead HD by 23 seconds for the 
month. The volume data may provide some evidence to support this claim. For May 2009, there 
are 1,629,219 WMT observations and 1,380,688 HD observations. For the month of May 2011, 
WMT has 2,331,075 and HD has 2,754,698. In May 2010, however, the amount of observations 
for WMT is 4,314,827 and for HD it is 5,400,357, significantly more than in either 2009 or 2011.

The median length of each year’s lead lag times provides a more accurate depiction of the 
evolution of the length of the lead lag time between stocks throughout the years, considering the 
large variations in lead lag lengths between different years and different stock pairs. For each year, 
we calculate the median of the absolute values of the eight lead lag durations for the eight stock 
pairs. This median is displayed in the final column of Table 1.

It is evident by inspecting the median column that the lengths of the lead lag time reduce over 
time. From 2000 to 2005, they are a few seconds. In both 2004 and 2005, the median lead lag 
duration is just 1 second. Before that, in 2003, a mere 1.5 seconds. In 2006, it is a few hundred 
milliseconds. After that, from 2007 to 2012, tens of milliseconds. The median lengths of the lead 
lag time for all of the years after 2012 are less than 10 milliseconds.

To answer the question posed at the beginning of this paper, the decline of the median lengths 
of the lead lag time below the human reaction time over the years demonstrates that information 
is primarily processed by computers and that trades placed by algorithms are the most influential 
factors in determining the lead lag duration. Some may question the extent to which algorithms can 
interpret and process news. Scholtus, van Dijk, and Frijns (2014) examine high-frequency trading 
following the release of US macroeconomic news. They discover that a delay of just 0.3 seconds 
can already have a major impact. Humans are incapable of reading the news and executing a trade 
in 0.3 seconds. Clearly, computers are automatically processing and understanding the news 
and trading appropriately. What they investigate is not the length of the lead lag time between 
individual stocks per se, but the 300 milliseconds they found using data from 2009–2011 are not 
discordant with those provided in Table 1 in terms of magnitude.

Table 2 – continued
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Next, we analyze to what extent the lengths of the lead lag time depend on the two stocks 
in a pair belonging to the same industrial sector. According to Hou (2007), the lead lag effect is 
predominant within the same industry. Hou (2007) did not utilize tick level data, however. Will 
the length of the lead lag time grow considerably if two stocks in a pair are not from the same 
industry? To answer this question, we re-assign the stock pairs at random, ensuring that no two 
stocks in a given pair belong to the same industrial sector.

Table 3
The lengths of the lead lag time between stocks within the financial sector

Year
GS  

leads  
AIG

WFC 
leads 
PGR

MS  
leads 
TRV

BAC 
leads 
ALL

AXP 
leads  
BK

C  
leads 
PNC

JPM 
leads 
STT

COF 
leads 
USB

Median 
of  

|Time|

2000  -87s   4s   -3s   -6s   -1s  10s  39s  29s   8s

2001  10s  16s  38s  -11s   3s  10s   5s  -50s  10.5s

2002   -2s  58s  13s  10s   -3s   -5s   1s   -1s   4s

2003   1s   1s  25s   -1s   0s   1s   2s   -5s   1s

2004   -1s   0s   0s   1s   0s   0s   2s   5s   0.5s

2005   0s   -1s   -1s   0s   0s   1s   1s   2s   1s

2006   -1.02s -240ms -630ms   -2s  -18ms -490ms   -1.6s -390ms 560ms

2007 109ms -110ms -340ms -320ms 110ms  22ms   2ms 800ms 110ms

2008  52ms -160ms  -89ms -200ms  74ms -220ms  -77ms  24ms  83ms

2009  15s  -20ms  59ms -270ms  -66ms  -24ms  -40ms  52ms  55.5ms

2010   -9ms  -19ms   2ms -110ms   6ms  -27ms  -8ms  12ms  10.5ms

2011  13ms  -87ms -104ms -120ms   9ms  -73ms  -50ms  52ms  62.5ms

2012   8ms  -23ms  -74ms   -1.09s  53ms  -37ms  -34ms  46ms  41.5ms

2013  14ms  -33ms   0ms  -14ms  38ms  -20ms  -12ms   1ms  14ms

2014  61ms   3ms  -11ms  -19ms  12ms  -47ms  -24ms   -1ms  15.5ms

2015   1ms   -2ms   -1ms -740ms   1ms   -1ms   -4ms   1ms   1ms

2016  15ms   -1.5ms  -49ms  88s   0.4ms  -15ms   -5.2ms   9.3ms  12.15ms

2017   -4.3ms  -10.5ms  -34ms -220ms  59ms   -3.5ms  -20ms   2.1ms  15.25ms

2018   -2.7ms   -8.3ms   -1.5ms -190ms   1.5ms   -2.7ms   -0.2ms   1.8ms   2.25ms

2019   -0.3ms  -18ms  -17ms -130ms   3.6ms  -19ms   0ms   0.8ms  10.3ms

2020   9.7ms   -5.1ms  -33ms  -21ms  14ms  -14ms   -5.7ms  18ms  14ms

2021  10.7ms   8.5ms   -0.7ms  -11ms   -1.3ms  -13ms   3.4ms   0.9ms   5.95ms

2022   -0.4ms   -9ms   -2.1ms  -12ms  10.1ms   -7.1ms   -1ms   3.1ms   5.1ms

Note: Each length of the lead lag time is measured in seconds(s) or milliseconds (ms).

Source: Author’s own calculation.

The results are displayed in Table 2. From 2000 to 2005, the median lengths of the lead lag time 
are a few seconds. In particular, in 2003, 2004, and 2005, the median lengths of the lead lag time 
are just 1 second. In 2006, it is a few hundred milliseconds, just like in Table 1. After that, there 
are a greater number of years in which the lead lag durations are tens of milliseconds compared to 
Table 1. Eventually, the median lengths of the lead lag time fall below 10 milliseconds. However, 
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the first instance of this occurs in 2015, as opposed to 2013 in Table 1. The overall declining trend 
is identical to that shown in Table 1. 

In 3 of the 23 years examined, Tables 1 and 2 have the same median lengths of the lead lag 
time. In 8 years, Table 2’s median length of the lead lag time is less than Table 1. In 12 years, 
Table 2’s median length of the lead lag time is more than Table 1. In general, the length of the lead 
lag time between two stocks from different sectors is not significantly longer than that between 
two stocks from the same sector.

To further validate the results presented in Table 1 and Table 2, we next focus on a particular 
sector. Sixteen large, liquid stocks are chosen from the financial sector: American International 
Group (AIG), Allstate (ALL), American Express (AXP), Bank of America (BAC), Bank of New 
York Mellon (BK), Citigroup (C), Capital One (COF), Goldman Sachs (GS), JPMorgan (JPM), 
Morgan Stanley (MS), Progressive (PGR), PNC Financial Services (PNC), State Street (STT), 
Travelers (TRV), US Bancorp (USB), and Wells Fargo (WFC). The stocks are randomly divided 
into 8 pairs for lead lag analyses. The results are presented in Table 3. Table 3 confirms the 
findings from Tables 1 and 2. The median lengths of the lead lag time have a similar decline over 
the years. They are in seconds from 2000 to 2005, in hundreds of milliseconds for 2006 and 2007, 
in tens of milliseconds after that, till eventually in a few milliseconds for the most recent years.

5. CONCLUSION

For large liquid US stocks, the median length of the lead lag time within a pair, whether the 
pair is from the same sector or not, is at a few seconds even as back as the year 2000. As the years 
progress, the median lead lag duration drops to eventually a few milliseconds by 2022.

This demonstrates that the information diffusion from one stock to another occurs, mainly 
via computers and algorithms, rather than human insights and human analyses. As the trade 
execution times on stock exchanges decrease, computers become faster, and algorithms become 
more sophisticated, even a few hundred milliseconds are eventually too long to prevent statistical 
arbitrage from taking advantage of the lead lag connection. That is why the length of the lead lag 
time has to continue to drop, and eventually drops to a few milliseconds by 2022.

As seen by the evolution of the median length of the lead lag time throughout the years, the 
efficient market hypothesis is alive and largely accurate, notwithstanding the possibility of local 
or brief deviations. According to Easley, de Prado, and O’Hara (2012), by 2009, high-frequency 
trading accounts for nearly two-thirds of the US stock trading volume. The findings of this article 
undoubtedly support this conclusion. Any breach of the efficient market hypothesis that is not 
local nor transitory will be identified by computers, exploited for profit, and finally eradicated 
since all possible gains from the inefficiency have been harvested.

In investigating the length of the lead lag time between an equity index and its futures, a 1987 
study revealed a lead lag duration of up to 45 minutes (Kawaller, Koch, & Koch, 1987), but 
a 1992 study discovered a length of the lead lag time of 15 minutes or less (Chan, 1992). We 
are convinced that the days of measuring the length of the lead lag time in minutes are forever 
gone, and we now understand that research on the length of the lead lag time undertaken for 
different eras cannot be directly compared, because lead lag duration tends to decrease as the 
years progress.

As stated in the literature review, cryptocurrencies have attracted the interest of scholars 
in recent years. The bulk of previous research on cryptocurrency lead lag relationship focuses 
on the direction of the connection as opposed to the length of the lead lag time. Most rely on 
daily or other low-frequency data. A direction for future research is to measure the lengths of 
cryptocurrency lead lag time and how they evolve over the years using tick-by-tick data. 



Bing Anderson • Journal of Banking and Financial Economics 2(18)2022, 49–59

DOI: 10.7172/2353-6845.jbfe.2022.2.4

5858

© 2022 Authors. This is an open access article distributed under the Creative Commons BY 4.0 license (https://creativecommons.org/licenses/by/4.0/)

References

Anderson, B. (2016). Stock price leads and lags before the golden age of high-frequency trading. Applied Economics 
Letters, 23(3), 212–216. https://doi.org/10.1080/13504851.2015.1066481
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