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ABSTRACT

Keynes argues that a beauty contest in financial markets is a combination of rational higher-order 
beliefs and market psychology or animal spirits. We find that a stable equilibrium, where also 
market psychology is included, can be possible if uninformed investors agree to reduce their 
required rate of return indicating that they enlarge the risk of their investment with the animal 
spirits component. 
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INTRODUCTION

Keynes (1936) writes: “professional investment may be likened to those newspaper 
competitions in which competitors have to pick out the six prettiest faces from a hundreds of 
photographs, the prize being awarded to the competitor whose choice most nearly corresponds to 
the average preferences of the competitors as a whole”. Keynes argues that investors’ decisions 
in financial markets are affected by higher-order beliefs and he calls this phenomenon “beauty 
contest in the financial markets”. He argues that the beauty contest can be divided into two effects: 
rational higher-order beliefs and market psychology. Shiller (2014) calls the latter component 
“animal spirits”, and he follows Keynes (1921) in defining animal spirits as a “gut feeling that 
rises from the ambiguity of directly unobservable probabilities of future returns.”

DeLong et al. (1990), Froot et al. (1992), and Campbell and Kyle (1993), among others, analyze 
the effect of animal spirits on the equilibrium price of a risky asset. Their basic assumption is that 
technical traders coordinate their actions, which results in a stable equilibrium. Furthermore, 
Allen et al. (2006), Bacchetta and VanWincoop (2008) analyze only the effect of rational higher-
order beliefs resulting in returns predictability in equilibrium. Ilomäki (2016a; 2016b; 2017) 
connects rational higher order expectations and animal spirits in the same framework, and shows 
that the animal spirits component reduces expected returns for investors when the beauty contest 
is present. However, the returns depend on crucially on the level of the risk-free rate return. 
In these studies, one half of the rational investors are assumed as informed and the other half 
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uninformed. In this article, the proportion of informed investors is 0 < μ < 1 and the focus is on 
the risk of uninformed investors, both with and without the animal spirits component.

Samuelson (1973) argues that in efficient markets with risk-neutral investors, the following 
must hold:
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where tP  is the equilibrium price, tV  is the fundamental value, tD  is dividend, tE  is the expectations 

operator, and fr  is the constant risk-free rate of return. In Samuelson’s definition investors are assumed to 
be risk-neutral. In real life, however, a rational investor cares also about the risk of investment besides the 
reward. The risk in financial markets can be defined as the variation of returns, which leads to the well-
known mean-variance paradigm (Markowitz 1952; Sharpe 1964). Thus, a risk premium   should be added. 
Shiller (2014) argues that stock markets seem to follow  
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higher order expectations is absent in this model.  

In this paper, the animal spirits component is specified by assuming coordinated actions of a large group of 
uninformed investors, and short-lived and risk-averse rational investors. The latter assumption is based on 
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Section 1 presents the model. Section 2 describes the equilibrium with only rational higher-order beliefs. 
Section 3 presents the equilibrium, when also market psychology is included. Section 4 concludes. 
 

1. The model 

The model follows Ilomäki (2016a; 2016b). The economy consists of rational risk-averse (CARA, with 
equal tolerance of risk  ) investors who live for two periods, investing in period one, and consuming in 
period two. There is an infinitely lived risky asset (share of firm F) and a constant risk-free rate of return .fr  
The atomistic rational investors have asymmetric information so that 10    is the share of informed 
investors and 1  is the share of uninformed investors in every period. That is, there are four kinds of 
rational investors in every trading period: young informed and uninformed investors who open their 
positions (demand at time t ) and old informed and uninformed investors who close their positions (supply at 
time ).t  Within the interval  1,0 , there is a continuum of young and old investors in every period. The 
investors are constrained by wealth so that the young investors y  at time t  have the same initial wealth .y

tw  
Short selling is available to young investors, and there are no transaction costs or taxes. 

In the economy, the natural logarithm of the dividend tD  follows a random walk  
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where Pt is the equilibrium price, Vt  is the fundamental value, Dt  is dividend, Et is the expectations 
operator, and r f is the constant risk-free rate of return. In Samuelson’s definition investors are 
assumed to be risk-neutral. In real life, however, a rational investor cares also about the risk 
of investment besides the reward. The risk in financial markets can be defined as the variation 
of returns, which leads to the well-known mean-variance paradigm (Markowitz 1952; Sharpe 
1964). Thus, a risk premium ω should be added. Shiller (2014) argues that stock markets seem 
to follow 
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where ω denotes the risk premium, and At denotes the animal spirits component. Note that the 
rational higher order expectations is absent in this model. 

In this paper, the animal spirits component is specified by assuming coordinated actions of 
a large group of uninformed investors, and short-lived and risk-averse rational investors. The 
latter assumption is based on performance-based arbitrage, where the success in investing is 
monitored by short period intervals (Shleifer and Vishny 1997). 

Our basic finding is that the animal spirits component is present in a stable Keynesian beauty 
contest equilibrium only if the short-lived uninformed investors accept more risk compared to the 
case, where when only rational higher-order beliefs are present.

Section 1 presents the model. Section 2 describes the equilibrium with only rational higher-
order beliefs. Section 3 presents the equilibrium, when also market psychology is included. 
Section 4 concludes.

1. THE MODEL

The model follows Ilomäki (2016a; 2016b). The economy consists of rational risk-averse 
(CARA, with equal tolerance of risk ν) investors who live for two periods, investing in period 
one, and consuming in period two. There is an infinitely lived risky asset (share of firm F) and 
a constant risk-free rate of return r f. The atomistic rational investors have asymmetric information 
so that 0 < μ < 1 is the share of informed investors and 1 – μ is the share of uninformed investors 
in every period. That is, there are four kinds of rational investors in every trading period: young 
informed and uninformed investors who open their positions (demand at time t) and old informed 
and uninformed investors who close their positions (supply at time t) Within the interval [0,1], 
there is a continuum of young and old investors in every period. The investors are constrained 
by wealth so that the young investors y at time t have the same initial wealth 
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. Short selling is 
available to young investors, and there are no transaction costs or taxes.

In the economy, the natural logarithm of the dividend Dt follows a random walk 
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where x  is the demand for stock of young investors )(y and s  is the supply of the stock by old investors 
)(o . The equilibrium condition assures that demand per share is one in the equilibrium. Furthermore, we 

assume that the excess returns on the risky asset follow normal distribution. This assumption assures that the 
conditional variance of the excess returns is constant.    

 

2. Equilibrium price with rational higher-order beliefs 

A risk-averse young investor, who lives for two periods, maximizes his/her utility by allocating wealth 
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where x is the demand for stock of young investors (y) and s is the supply of the stock by old 
investors (o). The equilibrium condition assures that demand per share is one in the equilibrium. 
Furthermore, we assume that the excess returns on the risky asset follow normal distribution. This 
assumption assures that the conditional variance of the excess returns is constant.

2. EQUILIBRIUM PRICE WITH RATIONAL HIGHER-ORDER BELIEFS

A risk-averse young investor, who lives for two periods, maximizes his/her utility by allocating 
wealth between risky and risk-free assets. The net excess return on a risky share is
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where tP  is the equilibrium price, tV  is the fundamental value, tD  is dividend, tE  is the expectations 
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where  denotes the risk premium, and tA  denotes the animal spirits component. Note that the rational 
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where 2
r  is the variance of excess returns. Since the informed investors have better information about risky 

assets, it must be that .22
ruri    Moreover, since the investors observe ,fr  its variance is zero.  Maximize 

(Equation 3) with respect to rx , use Equation (2) and note that the demand per risky asset’s share is one in 
the equilibrium. Thus, the first order condition for the risky asset reads  
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defines the risk premium. Since 2
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where the subscripts i  and u  refer to informed and uninformed investors, respectively. Solve Equation (4) 
forward by substituting out future prices. Then, as the horizon approaches infinity, Equation (4) produces 
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According to the properties of random walk, the change in the dividend at time t  is permanent. Thus, 
Equation (7) results in the simple perpetuity model  
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where the subscripts i  and u  refer to informed and uninformed investors, respectively. Solve Equation (4) 
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where the subscripts i  and u  refer to informed and uninformed investors, respectively. Solve Equation (4) 
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where the subscripts i  and u  refer to informed and uninformed investors, respectively. Solve Equation (4) 
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According to the properties of random walk, the change in the dividend at time t  is permanent. Thus, 
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Recall that the young (old) informed investors have private information about Dt, Dt + 1, Dt + 2  
(Dt – 1, Dt, Dt + 1).Therefore, a young (old) informed investor solves the fundamental values  
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where the subscripts i  and u  refer to informed and uninformed investors, respectively. Solve Equation (4) 
forward by substituting out future prices. Then, as the horizon approaches infinity, Equation (4) produces 
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According to the properties of random walk, the change in the dividend at time t  is permanent. Thus, 
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Note that the uninformed investors do not observe dividends. 
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Given that μ is the share of the rational young and old informed investors and 1 – μ is the share 
of the uninformed investors, the rational choice equilibrium price in this economy is 
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Taking the difference of sequential variables from Equation (9) yields Equation (14). Thus, 
Equation (14) proves returns predictability (because it includes ΔPt – 1) in the equilibrium. This is 
consistent with Allen et al. (2006), Bacchetta and VanWincoop (2008) with rational higher-order 
beliefs. 
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3. EQUILIBRIUM PRICE WITH ANIMAL SPIRITS 

Following Ilomäki (2016a; 2016b), suppose that the uninformed investor starts to include an 
animal spirits component At in the pricing equation 
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apart forever. 
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To find stable equilibrium conditions (Equation 15), it is useful to analyze it in ΔPt /Pt – 1 
series. By manipulation of Equation (15), we have it as
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However, according to the assumption that infinite bubbles are impossible in the economy, 
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Equation (16) produces that ωi – ωu = At . The additional assumption (2) and Equation (6) 
indicate that ωi – ωu = At < 0. To see this, we plug ωu = ωi – At into Equation (6), obtaining 
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Thus, Equation (17) shows that the effect of animal spirits can only be positive if 22
iu   . Recall that 2 is 

the variation of excess returns. Additional assumption (2) assures that the informational advantage of 
informed ones produces 22

iu     among subsequent generations resulting 22
iu    in stable equilibrium. 

This implies the negative effect of .tA  

 

Corollary 1: Compared to the case where only rational higher-order beliefs is present, a stable equilibrium 
is possible if only if uninformed investors as subsequent generations agree to reduce their required rate of 
return indicating that the animal spirits component creates more risk for them. 

 
4. Conclusions 

The results indicate that if the uninformed investors add the animal spirits component in their pricing, they 
add risk in their investment, when the Keynesian higher order expectations already exist in the economy. 
This happens because infinite bubbles are impossible. This indicates clearly that it is inevitable that a future 
generation of uninformed investors has to suffer severe losses when the correction eventually happens.  

In other words, we find that the animal spirits can be present in the equilibrium only if the uninformed 
investors reduce required rate of return. This suggests that rational uninformed investors ignore animal 
spirits in their trading when the Keynesian beauty contest is present, because the animal spirits component 
increases the risk of investment. 
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Corollary 1: Compared to the case where only rational higher-order beliefs is present, a stable 
equilibrium is possible if only if uninformed investors as subsequent generations agree to reduce 
their required rate of return indicating that the animal spirits component creates more risk 
for them.

4. CONCLUSIONS

The results indicate that if the uninformed investors add the animal spirits component in their 
pricing, they add risk in their investment, when the Keynesian higher order expectations already 
exist in the economy. This happens because infinite bubbles are impossible. This indicates clearly 
that it is inevitable that a future generation of uninformed investors has to suffer severe losses 
when the correction eventually happens. 

In other words, we find that the animal spirits can be present in the equilibrium only if the 
uninformed investors reduce required rate of return. This suggests that rational uninformed 
investors ignore animal spirits in their trading when the Keynesian beauty contest is present, 
because the animal spirits component increases the risk of investment.
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