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ABSTRACT 

This paper studies the stability, equilibrium and effi ciency of directed networks of trade 
intermediaries under a rule of equi-repartition of profi ts. This equi-repartition rule, although 
simple and natural, introduces complex topologic considerations from players. Core-periphery 
structures can arise endogenously and result in stable networks even assuming complete 
homogeneity of all agents in the network. The concept of network partition is introduced to 
provide examples of networks that could be seen as arising from the linking up of a set of disjoint 
networks in an endogenous manner. From an aggregate welfare perspective as well as sometimes 
from an individual perspective, leaving the linking up of those individually effi cient networks to 
each individual agent can result in an ineffi cient aggregate network, even if taken in isolation each 
pre-existing network is effi cient.

JEL classifi cation: D85, G10, L14

Keywords: trading; telecommunications; settlements; post-trading industry; networks; 
graph-theory.

1. INTRODUCTION

Network economics modelling has been successfully applied over the last decade to describe 
economic phenomenon as diverse as the social transmission of job information (Calvo-Armengol 
and Jackson), free-trade agreements (Goyal and Joshi), and co-authorship links (Jackson and 
Wolinsky). Network economics have also provided models that are phrased in general terms 
and can thus potentially be applied to a variety of situations (see for example Bala and Goyal, 
Bellefl amme and Bloch, Dutta and al, Goyal and Vega-Redondo, Jackson). Concerns about 
the fi nancial resilience of the banking system has led to a renewed interest in the modelling 
of the complex links between fi nancial institutions. Of particular importance are networks of 
intermediaries related to trading between banks and fi nancial institutions. Recent empirical 
evidence suggests that these trading relationships follow a core-periphery structure, whereby 
a group of banks in the core are densely linked to each other and a set of peripheral banks maintain 
links with banks from the core, but not between each others (Craig, Veld, Fricke). In this paper 
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we defi ne a model of trade network with intermediaries, similar to Babus, Veld, and Goyal, 
in which each intermediary along an intermediary chain used to achieve a trade gets an equal 
share of the total profi t derived from the overall trade, after deducing the relevant costs incurred. 
This profi t sharing rule is consistent with Siedlarek bargaining model in the case where the time 
available to all parties of the transaction to bargain down the fees of intermediaries tends to 0. 
Goyal and Vega-Redondo allow intermediation between players, but in the opposite limiting case 
of Siedlarek bargaining model where the time available to all parties of the transaction to bargain 
down the fees of intermediaries tends to +∞. In this opposite case, intermediaries for which there 
exist alternative intermediation paths cannot derive any profi t from their intermediation service. 
This leads to the star network being the only stable network at equilibrium. Babus provides 
a more evolved model for the inter-bank market, but also fi nd as main outcome the star network 
with a single intermediary between all players. Veld manages to obtain core-periphery stable 
networks, but at the cost of heterogeneous parameters for core and non-core banks. Other attempts 
to provide different equilibrium structures have often resulted in (unrealistic) regular networks, 
where all agents have (almost) the same number of links.

The fi rst main contribution of this paper is to show how a rule of equi-repartition of 
profi ts endogenously leads to stable core-periphery networks, without having to resort to any 
heterogeneity assumptions concerning the network, contrary to. Although most of the results 
derived in this paper concern the case where only one strict intermediary is allowed to complete 
a trade, similar to and most of the papers mentioned above, this particular result of stable core-
periphery network is extended to the case of intermediary chains of arbitrary length. The family 
of core-periphery networks obtained also allow for very different number of links for each agent 
in the core.

The second main result of this paper is to show how core-periphery networks can result from 
the linking up of disjoint structure that are, when considered individually, effi cient, while failing 
to achieve global effi ciency of the aggregate network. Policy implications are that there can be 
benefi t in having a central planner or providing additional incentives to agents for making them 
re-arrange the aggregate network to reach more effi cient outcomes.

Section 2 presents standard graph-theoretic notions used in the rest of the paper and defi nes the 
family of games studied. Section 3 characterises parameter constellations for which the most usual 
structures, such as the stars, are stable networks, with a view to better understand the strategic 
considerations of agents in the intermediation networks defi ned. Section 4 introduces the notion 
of network partition in order to formalise the types of structures that are stable yet contain a given 
set of subnetworks, and to construct concrete examples of core-periphery networks arising from 
the linking up of stars, for which we coin the term of “multistars”. The section then studies the 
effi ciency of multistars as a function of these networks structural and cost parameters and provides 
the two main contributions of the paper mentioned above. Section 5 concludes. Proofs that are 
more technical are relegated to the Annex for clarity, while easier proofs remain in the main text.

2. DEFINING A NEW FAMILY OF GAMES

2.1. General graph theoretic defi nitions

Agents form the set of nodes V (G) of a network G. The cardinality of a network is by defi nition 
the cardinality of its set of nodes, that we often denote by n. An edge, or link, is any (ordered) pair 
of nodes (A,B), with A and B in V (G). It is denoted AB. Note that the order is important, because 
AB is different from BA if A and B are not the same node.

Any edge AB is either in the network, that is, belongs to the set of edges E(G) of the network 
G, or not in the network, that is, does not belong to the set of edges E(G) of the network G. 



Fabien Mercier • Journal of Banking and Financial Economics 1(5)2016, 39–63

© Faculty of Management University of Warsaw. All rights reserved. 

DOI: 10.7172/2353-6845.jbfe.2016.1.2

4141

An edge AB from the node A to the node B represents some (unidirectional) “link” the agent A 
has established with agent B. For example, if one thinks of the nodes as the Central Securities 
Depositories (CSD) of the post-trading industry, an edge between A and B could mean that A 
is an investor agent in B idem est holds an account with B that allows it to settle transactions 
of securities in the domestic market of B. Note the relation does not need to be symmetric, that 
is, A can have an account with B (and thus be able to settle trades for its clients in the domestic 
market of B) without the converse being true (B does not need to have an account with A). This is 
the reason why the pairs are ordered, and the network is said to be directed.

As an example, consider the hypothetical network on Figure 1. Note that while some pairs of 
nodes are linked in both directions (AB and FE), other links are just one directional.

Figure 1.
A network with six nodes and 14 edges

A

B

C D

E
F

Three networks have a particular signifi cance when studying trade or settlement networks: 
the empty network, which is a network with no link which generally refl ects too high costs for 
establishing a link compared to the expected profi ts derived from it, the complete network, which 
contains all possible links and which indicates the highest desire for disintermediation, and the 
complete star network, where one node, the center of the star, is linked in both directions to all 
other nodes, the leaves of the star. Hence any trade in a complete star network involves the center 
of the star. Figure 2 depicts these three particular types of networks.

2.2. Defi ning intermediation paths and payoffs of the games , ,w c gG
k
n

0
^ h

For each edge AB there is a cost wAB to build the edge AB, and a cost cAB to use it in an 
intermediation chain. For each pair of vertices there is a latent intermediation profi t gAB that can 
be realised and shared if there is at least one admissible intermediation path from A to B. We make 
these notions more precise in this section.

Figure 2.
A complete star with 6 leaves, the empty network on 5 nodes and the complete network on 4 nodes.
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Defi nition 1 A path is a network P whose nodes can be labelled V (P) = {u1, u2, ..., uk} such that 
its set of edges is precisely E(P) = {(u1, u2), ..., (uk−1, uk)}. We often write P = u1, u2,. .., uk in 
this case, and say that P is a u1uk-path, or a path from u1 to uk. The length of P is k −1, while its 
cardinality is k.

Note that our notion of path has a direction: a path from u to v is not a path from v to u, at least 
when u ≠ v.

Defi nition 2 Let G and H be two networks. Then H is a subnetwork of G if, and only if, 
V (H) ⊆ V (G) and E(H) ⊆ E(G).

Defi nition 3 A path of a network G is a path that is a subnetwork of G.

Let n and k0 be two positive integers, N a set of nodes of cardinality n and w, c, and g 
real-valued functions defi ned on the cartesian product N2 = N × N. Players are the nodes in N and 
decide to link, or not, to other nodes. Hence the action set of a given player u is the set of edges 
(u, v) for v ∈ N, v ≠ u. If node u establishes the link (u, v) to node v it has to bear a cost of w(u, v).

Some paths of the resulting network can be used to carry potential trades that benefi t all the 
players along those paths. More precisely, for each ordered pair (u, v) there is the potential for 
a trade of value g(u, v) to be realised. For the trade to be realised there must be a path of length 
less than k0 in the network. A cost c(u, v) is associated to each edge (u, v) of the network. The cost 
of using a path is simply the sum of the costs of all its edges. For each pair (u, v) ∈ N2 a uv-path 
of minimum cost can be selected for the trade if it is an admissible path, that is, a path of length 
not more than k0 and whose costs do not exceed g(u, v).2 If more than one such admissible path 
of minimum cost exist then the path used to perform the trade is selected randomly among all 
admissible paths of minimum cost, the uniform probability distribution being used. Each node of 
the selected admissible uv-path of minimum cost u = u1, u2, ..., uk = v receives an equal share of 
the aggregate net profi t g(u1, uk) − (c(u1, u2) + c(u2, u3) + ... + c(uk−1, uk)) derived from the trade, 
that is:

g(u1, uk) − (c(u1, u2) + c(u2, u3) + ... + c(uk−1, uk))
k

The player ui are called the intermediaries of the trade. The two players u1 and uk are its fi nal 
intermediaries, while players u2, ..., uk−1 are its strict intermediaries. Players build edges such as 
to maximise their expected payoff function.

Theoretical justifi cation of the equal profi t splitting allocation rule can be found in Siedlarek. 
Indeed, in the author model of stochastic bargaining involving different chains of intermediaries, 
when the discount factor of the bargaining model tends to 0, that is, when players do not have 
suffi cient time to bargain over the splitting of profi ts without missing the trade opportunity (and 
thus become very impatient), the expected payoff of each intermediary become equal3. We are 

2 Deleting this assumption would result in a different still interesting problem, where the nodes of the network are actually obliged to perform 
the transaction, even in case they take a net loss.
3 Defi ning the profi t rule such that the fi rst intermediary on a chain of intermediaries derives all the benefi t from a given trade gives rise to 
a simpler, yet also interesting, problem. In such a setting, where node A earns the whole profi t derived from settling the trade of g − kw when at the 
beginning of an intermediation chain of length k, one can easily prove that:
1) if w ≥ g − c then the empty network is a NE, and that it is the only NE if we assume further that w ≥ g − c + (g − 2c)(n − 2)
2) the complete network is the only strict NE if, and only if, c > w.
3) a directed cycle is a NE if, and only if, g − c + g − 2c + ... + g − (n − 1)c > w.
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taking this view here; the opposite view would be to assume agents have plenty of time to bargain 
before moving on to carry out the trade; in such a case, according to, intermediaries which are not 
“essential” – meaning there exists, in the network, another chain of intermediaries to which they 
do not belong – would earn a profi t of zero.

Throughout this paper we will assume that w, c, and g are constant functions. Hence the above 
profi t simply reduces to

g − (k − 1)c
=: πkk

To write down players’ payoffs explicitly under this hypothesis it is useful to defi ne a minimum 
path, as minimum path correspond to path of minimum costs:

Defi nition 4 A minimum uv-path is a path from u to v of minimum cardinality. The set of all 
minimum uv-paths is denoted by Puv , and the length of any minimum uv-path by d(u, v) and 
called the distance from u to v; if there is no path from u to v then we set d(u, v) := +∞. For any 
positive integer k, the subset Puv

k#  of Puv is the set of minimum uv-path of cardinality less or equal 
than k. We also set Puv

3#  := Puv for convenience.

Defi nition 5 A minimum path is a path such that there exists two nodes u and v such that it 
is a minimum uv-path. We denote by P the set of all minimum paths of the network. Hence, 
P P

,u v V G
uv,=

3 ^ h" ,

.

Since the cost function is constant, the set Puv of minimum uv-path is precisely the set of paths 
of minimum costs, from u to v and the set Puv

k0#  of minimum uv-path of cardinality less or equal 
than k0 is precisely the set of admissible uv-paths. The full expression of the payoff function for 
agent i of the network in the game , ,w c gG k

n

0
^ h can then be expressed as:
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We will always denote by k0 the maximum number of intermediaries allowed in the rule of the 
game, and set k0 = +∞ if chains of intermediaries of arbitrary length are allowed. Note that for any 
given game with n players, allowing an infi nite number of intermediaries is equivalent to allowing 
at most n intermediaries. That is, for all n, we have: , , , ,w c g w c gG Gn n

n=3 ^ ^h h. Also note that in 
the formula giving agent u’s profi ts we always have d(u, v) ∈ {1, 2, ..., k0} for all pairs of nodes 
(A,B) which appear in the sum. Finally, because paths of cardinality k such that g < (k − 1)c 
are not admissible, we have that for all n, , , , ,w c g w c gG G

,min

n n

k k c

g
10 0

=
+

^ ^
b

h h
l

. Hence we can 

3) the star is a NE if, and only if, c ≤ w ≤ g − c
4) If −w + g − c > 0 then any NE is strongly connected, with diameter Δ < w/c + 1
5) In a NE having more than two components, all vertices earn a 0 payoff.
Point 5) involves a very easy argument. Indeed, assumes G is a NE with at least two different components, with A and B two nodes belonging to 
different components of G and with B earning a non-zero payoff πB > 0. Because A is not in the same component of B it does not derive any profi ts 
from trades with the vertices B is trading with. A can thus strictly increase its profi t by πB by simply building an edge to each of the out-neighbours 
of B, a contradiction with NE. Notice this argument is not valid anymore if all intermediaries share profi ts, since the higher payoff of B maybe due 
to its strategic intermediation role between vertices of its own component, and A cannot replicate B role in that matter as it cannot replicate the 
edges CA for C in-neighbour of B. It is this more complex environment that we investigate in the next section.
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assume without loss of generality that 1k c
g

0 # + . This allow to drop the factor 1 cg n 1AB2 -^^ h h
 in 

the expression of players’ profi ts.
Defi nition 6 A Nash equilibrium (resp. a strict Nash equilibrium) is a strategy profi le G in which 
any agent deviating unilaterally would not be better off (resp. would be worse off).

Because this payoff function takes into account the overall structure of the network by making 
the set of all minimum paths containing u a pre-requisite for computing u’s profi ts, it can be very 
diffi cult to characterise all nodes’ strategies that result in a Nash equilibrium. Indeed, because 
from a given strategy a unilateral deviation from a given player consists in building or deleting 
edges starting at u at the same time, thus reshaping the set of all minimum paths in a way diffi cult 
to predict, we will often resort to the more general notion of stability:

Defi nition 7 A network G is stable (resp. strictly stable), if, and only if, adding or deleting any 
single edge (u, v) would not increase agent u’s profi ts (resp. strictly increase agent u’s profi ts).

This would translate the idea that given an initial network, each node in turn only considers 
one edge at the time, computing whether it would be better off by severing it if this edge is in 
the network or by creating it if it is not in the network. In a stable network no node would add or 
delete an edge.

Proposition 8 If G is a Nash equilibrium (resp. strict Nash equilibrium) then it is stable (resp. 
strictly stable).

The proof is trivial and follows from defi nitions. Hence establishing some necessary properties 
of stable networks certainly establishes the same properties for the more restricted class of Nash 
equilibrium networks. The converse need not be true, although stable graphs which are not Nash 
equilibria are not straightforward to construct. The question of defi ning a family of stable graphs 
which are not Nash equilibria is thus left open.

Defi nition 9 A network is strongly connected if, and only if, for any pair (u, v) of its nodes, there 
exists a path going from node u to node v.

Defi nition 10 The diameter Δ of a network is defi ned by Δ = max{d(u, v), u ≠ v}.

Defi nition 11 Let G be a network and A be a node of G. We denote by N+(A) the set of all 
nodes towards which A maintains a link, and by N −(A) the set of all nodes which maintain a link 
towards A. The cardinality of N +(A) is called the out-degree of A, and is denoted d +(A), while the 
cardinality of N −(A) is called the in-degree of A, and is denoted d −(A).

Defi nition 12 A graph G is d-regular if all its nodes have both in and out-degree equal to d. 
A graph G is regular if there exist a natural number d such that G is d-regular.
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3. RESULTS

3.1. Bounds to the diameter

The diameter of a network is thus the maximum distance between any two nodes of the 
network. Note that the diameter of a network is fi nite if, and only if, the network is strongly 
connected.

Proposition 13 If w
g c

2
$

-
, then any stable network is strongly connected and its diameter satisfi es

,min g c
w

k

g c
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the bound is optimal, with the directed circle C of diameter 
g c
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g c
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W
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 being a stable

network for which the bound is reached.

The proof of the bound validity is provided in Annex 6. The stability of the directed circle of 
the mentionned diameter is easy to prove by symmetry.

Notice in passing that another (weaker) necessary condition for the minimum path to be 
able to carry out a trade is that g − Δc > 0 ie Δ ≤ g/c. Hence the above results also contains the 
somehow simpler condition that Δ ≤ g/c.

3.2. Extreme cases: no links, or all the links

3.2.1. The empty network

Proposition 14 If w
g c

2
#

-  then the empty network is a Nash equilibrium.

Proof. If any player deviates unilaterally from the strategy profi le yielding the empty network, 
it means it has built some number k of edges. But building such edges incurs a cost of kw, and 
a profi t of only k

g c

2

-
. Since k

g c
kw

2
0#

-
- , this player is not better off. ■

Clearly, if a strict inequality holds, the empty network becomes a strict Nash equilibrium.

Note that if 
g c

w g c
2

1#
-

-  deviating would be socially strictly more effi cient. Indeed, 
the aggregate profi t would be of g − c − w > 0.

Remark 15 This proposition does not imply that the empty network is the only Nash equilibrium. 
For example, assume g > 2c and g c g cg c

w
2

2 2 3
1#

- --
+ . Then the circle of cardinality 

three is a strict Nash equilibrium, as well as the empty network.

Nevertheless we have the following result:

Proposition 16 If :
g c

nw
g c

n n
g c

l
2

1 2
2

2 2
3

3
4

3
1k k2 3 00 0

2
-

+ -
-

+ - -
-

=2 2^ ^ ^
^ ^

h h h
h h

, 
then the empty network is the only strict stable network (and the only strict Nash equilibrium).

The proof is provided in Annex 6.
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3.2.2 The complete network

Proposition 17 If w
g c

6
1

+ , then the complete network is the unique strict stable network (and 
it is a strict Nash equilibrium).

Proof. Suppose w
g c

6
1

+
 and let G be a stable network. First, since 

g c g c

6 2
1

+ -
 we

have that w
g c

2
1

-
 and thus by Proposition 13 the network is strongly connected. We then

prove a property called transitivity: if (A,B) is in the network and (B,C) is in the network then 
(A,C) is in the network. Together with strong connectivity it can easily be checked that it implies 
the network G is the complete network.

Let (A,B) and (B,C) be two edges in the network. Assume by contradiction that the edge (A,C) 
is not in the network. Then the additional profi t for A to build edge (A,C) is equal to the sum of the 
additional gains from trades of type (A,C) and of the intermediation fees from all new minimum 
paths using AC, minus the cost w of building AC. Since the additional gains from being able to 

settle trades with C directly (without using B as an intermediary) are 
g c g c

w
2

2 3
2-

--
, the 

node A is willing to create the edge (A,C), a contradiction with stability. Hence the edge (A,C) was 
already there. This concludes the proof. ■

3.3. Intermediate cases

The following results single out the complete star as being a remarkable structure, since it is 
always a Nash equilibrium when the costs of building new edges are neither too high, nor too 
low, and this no matter the length k0 − 1 ≥ 2 of the intermediary chains allowed. Again, there may 
exists other Nash equilibriums, like the triangle mentioned in Remark 15.

3.3.1 Characterisation of stable and Nash equilibrium complete stars

Proposition 18 Assume g > 2c. A complete star of size n is a stable network if, and only if,
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Proof. a) No leaf is strictly better off creating a new link if, and only if
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b) Nor to delete one, if, and only if,
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c) The center does not want to delete a link, if, and only if,

 w
g c

n
g c

2
2

3

2
#

-
+ -

-
^ ch m

which happens to be the same condition as for a leaf not to delete a link. ■
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The inequality, if strict, characterises stars that are strict Nash equilibrium.
Interestingly, the condition for a complete star to be a stable network (resp. strict stable 

network) is the same as for being a Nash equilibrium (resp. strict Nash equilibrium):

Proposition 19 Assume g > 2c. Then stable complete stars are also Nash equilibria.

The proof is provided in Annex 6.

Notice that, holding all parameters except n constant and making n tend towards infi nity, 
there exists a threshold from which the complete star becomes a Nash equilibrium. This translates 
the fact that when the number of agents in the economy increases, it becomes more useful to 
have a single intermediary (and pay to it fees for its intermediation services) than to establish 
connections towards each individual agent.

Remark 20 This does not imply that a subnetwork or a induced subnetwork of a network which 
is a star will be stable if it satisfi es this condition, since strategic considerations involving nodes 
outside the star may dominate. For example, if a star is a subnetwork of a bigger network and 
some leaf A of the star is linked to many vertices outside the star, another leaf B of the star may 
want to establish a direct link to A to derive higher profi ts from trades with those out-neignboors 
of A which are not in the star (avoiding the center of the star as an intermediary for such trades). 
Hence, the concept of stability of a network does not translate easily to its subnetworks.

We now turn our attention specifi cally to the case where only a maximum of three 
intermediaries is allowed. Although such an assumption is clearly restrictive, this model will still 
capture the dependency of a node’s strategic choice relatively to the overall network topology. 
Hence, the three intermediary case sheds some light on the nature of strategic interactions better.

As previously shown, for some constellations of parameters the complete star, the complete 
network or the empty network are stable networks or Nash equilibria. Nevertheless, to characterise 
all stable networks or Nash equilibria for any constellation of parameters is still an open question 
even in the three intermediary case.

3.3.2. Characterisation of stable d-regular uninetworks

We saw that when the cost of establishing an edge w is neither too high nor too low, the 
complete star is always a stable network and a Nash-equilibrium. The complete star exhibits 
two striking structural features. First, in a star any two nodes are linked only by a unique path, 
hence there is no other admissible path for agents to carry out any given trade than this single 
path. Second, the star shows a singular asymmetry: the center has to sustain the costs of all links 
towards the other vertices of the star, and derives benefi ts from all the trades of the network, 
whereas the leaves have only to pay for a single link, but are the strict intermediaries of no trade. 
This is refl ected at the level of individual nodes by a very high degree asymmetry, with the center 
being of the highest possible in and out-degree and the leaves being of in and out-degree 1, the 
lowest possible in and out-degree in a connected graph.

A natural question is thus to ask if a more “balanced” structure – by which we mean more 
symmetry in the underlying network – would necessarily provide alternative paths for dealing 
with a same given trade. Can symmetric networks be stable without providing for more than one 
alternative paths to carry out trades?

More precisely, when parameters are homogenous, game theory often studies symmetric 
equilibria, that is, equilibria where all players play the same strategy. This is because this approach 
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is consistent with not favouring one agent more than another in predicting which network will 
emerge from the game4.

A symmetric equilibrium results in a vertex-transitive graph, that is, a graph G for which, 
for any players i, j there exists a graph automorphism σ of G such that σ(i) = j. Hence, both i 
and j are indeed playing exactly the same action with respect of the other nodes once a proper 
relabelling of the names of the players has been applied. Symmetric equilibrium thus result in 
(often excessively) “balanced” networks. In particular, these networks are d-regular, since it is 
easy to check that all their nodes will have both in and out-degree d.

Because we believe the notion of symmetric equilibrium is actually too strong, in what follows 
we will actually study the more general case of regular networks (some regular networks do not 
arise from symmetric strategies, but from other, less stringent, strategies). Hence, the question 
is: does there exist regular network which are stable and do not provide with alternative paths to 
settle trades?

Given a game G k
n

0
, that is, a maximum number k0 of intermediaries allowed, a uninetwork is 

a network such that each trade (A,B) has precisely one corresponding admissible path. For example, 
in the case of Gn

3 , that is, when a maximum of three intermediaries is allowed, a uninetwork is 
such that for any trade (A,B) either A is directly linked to B or there exists a unique intermediary 
C such that (A,C) and (C,B) are in the network. Consequently the structures depicted in Figure 3 
cannot be subnetworks of any uninetwork of a game Gn

3 , and, by extension, of any uninetwork of 
G k

n  for k ≥ 3.

Figure 3.
Forbidden subnetworks in uninetwork Gn

3

In our model, we do not require a given node A to possess a closed path towards itself to carry 
out a trade from itself to itself. Nevertheless, to use results from algebraic graph theory, we need 
to make this a requirement here, that is, we need to ask that in a uninetwork there is precisely 
one single admissible path from any node A to any node B with possibly B = A. Admittedly, this 
imposes more structure than should have been the case, but this additional requirement enable us 
to use the classic algebraic result that the (i, j)th entry of the kth power of the adjacency matrix of 
a graph gives the exact number of walks from node vi to node vj. We use one of the main theorem 
of Gimbert to derive a necessary condition for a regular uninetwork to be stable. For the games 
G k

n  with k ≥ 4, the inexistence of stable regular uninetwork is straightforwardly implied by a 
result from the literature that there exists no regular uninetwork with a unique path of length at 
most l for l ≥ 3 between any two vertices.

Defi nition 21 Given a network G the line-network of G is the network LG with set of nodes 
V(LG) = E(G), the set of edges of G, and where a node (A,B) of V(LG) is linked to a node (C,D) of 
V(LG) if, and only if, B = C in G.

4 Although, as mentioned in the introduction, the realism of those networks can be questionned, they are still worth studying.
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Theorem 22 [Gimbert] Let d ≥ 2. There exists a unique d-regular network for which there exists 
a unique path of length 1 or 2 between any two distinct nodes and a unique closed path of length 
2 from any given node to itself: it is the line network LKd+1 of the complete network Kd+1.

Figure 4 illustrates such a network for d = 2:

Proposition 23 Assume g > 2c Then a d-regular network is stable if, and only if,

 d
g c g c

w
g c

d
g c

2
3

2

6 2
2

3

2
# #

-
+

+ -
+

-
c b cm l m

The proof is provided in Annex 6.

Hence, although there exist stable regular networks which fail to provide more alternative 
paths for carrying out any given trade, the number of those networks is very limited: by Gimbert 
Theorem (Theorem 22), they are the line graphs of complete graphs, and by Proposition 23, only 
the constellation parameters satisfying the inequality stated in Proposition 23 are stable.

In conclusion, more symmetry in network structures undoubtedly favour the existence 
of alternative paths to settle trades, and the exceptions to this rule are few and fully 
caracterised in this section.

Figure 4. 
The unique regular uninetwork of degree 2

3.4. Summary of Nash equilibria and stable networks

Figure 13 summarises the results obtained so far.

Figure 5.
Summary of proven results
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4. OBTAINING CORE-PERIPHERY NETWORKS FROM STARS

Real-life networks are seldom completely built from scratch. Rather, they usually arise from 
linking up pre-existing networks. In a market-environment with no central social planner, linking 
up is left to the incentives of individuals. Hence there is always the possibility that the linking, 
left to individualistic profi t-maximising agents, would not result in an effi cient network for the 
whole, even though taken individually each pre-existing network (which could be thought as, 
for example, national markets before the opening of their borders) was effi cient. That is, the 
incentives of the agents in linking these different historical networks may not lead to an effi cient 
network of the whole.

The notion of incentives is, in our framework, captured by the notion of stability and Nash 
equilibrium. Indeed, by defi nition in a strict Nash equilibrium no player would add and/or delete 
any set of links, since it would result in a lower payoff for him. In a strict stable network, no 
player would add a single new link nor delete a single existing link for the same reason. Now the 
problem of knowing if letting individual agents linking separated networks leads to an effi cient 
network can be easily formalised in the following way: a certain number of effi cient networks H1, 
H2,..., Hk are suddenly considered as the different disjoint parts of a (bigger) aggregate network 
G. Which structure will arise? Will this structure be effi cient? Are there many different structures 
that can arise from such an operation or is the outcome predictable? Defi nition 24 allows to 
formalize the concept of an aggregate network obtained in a way that preserves its individual 
components in an endogeneous maner. Moreover, it provides a way to conceptualise the building 
up of a specifi c core-periphery network, which we show can be seen as resulting from the linking 
up of a set of disjoint stars.

Defi nition 24 A network G has a partition {Hi, i ∈ I} of subnetworks if, and only if, each Hi is 
a subnetwork of G, and each node of G belongs to a unique Hi . In other words:

 E(Hi) ⊆ E(G) for all i ∈ I and V (G) = V Hi
i Id

^ h&

We see that asking G to be stable, or to be a Nash equilibrium, is actually simply rephrasing the 
previous problem in the particular case where none of the “pre-existing” networks H1, H2,..., Hk 
has been modifi ed – and thus all are still present as such in the resulting aggregate network. That 
is, “domestic” structures were preserved and linked in a way compatible with the individual 
incentives of each node. How does this linking occur? Does it lead to an effi cient network for the 
whole without the need for coordination of the economic agents involved? Important to notice 
is that the preservation of the subnetworks H1, H2,..., Hk is not linked to sunk costs (costs to 
establish their links that were already paid for and hence less profi table to destroy), but follow the 
same general one-period game setting than the rest of the paper. In that sense the networks can 
be seen more as refl ecting domestic agents’ “habits” for paying for and using a domestic, local 
network, than as refl ecting some legacy infrastructure already built. This makes the results of this 
subnetwork “preservation” and the study of the emerging core-periphery network that follows all 
the more striking.

A simple example where the answer is affi rmative is for parameter constellations such that 
w

g c

6
1

+
. Indeed, by Proposition 17 we know that the unique Nash equilibrium network in that 

case is the complete network, and it is easily checked that it is also effi cient. Now it can easily be 
show that taking the union of any number of complete networks will result in a global network 
which is also complete, hence also effi cient for such constellations of parameters: since w

g c

2
1

-



Fabien Mercier • Journal of Banking and Financial Economics 1(5)2016, 39–63

© Faculty of Management University of Warsaw. All rights reserved. 

DOI: 10.7172/2353-6845.jbfe.2016.1.2

5151

the union, at equilibrium, will be strongly connected. Because w
g c g c g c

6 3

2

2
1

+
= -

--
 one 

can prove that transitivity holds at equilibrium, and conclude as in the proof of Proposition 17.

Theorem 26 and Theorem 27 focus on the case where all the graphs Hi are complete stars 
(possibly of different sizes). These theorems provide a condition under which the supremacy of 
the centers of a star is in fact re-enforced by aggregation, since each leaf wants to send a link to 
the center of each foreign stars on top of maintaining the link towards its own domestic center, and 
do not link to other nodes than the centers. This proves that, for some constellation of parameters, 
aggregation of different markets can actually increase the power of the historical “oligopoly” 
(formed by the centers of the stars) instead of creating new, alternative intermediation chains. This 
also provides an example of stable core-periphery network under homogeneous cost assumption.

We then prove that, for a wide range of parameters, these resulting networks are Pareto-
dominated by the complete star. In particular, they cannot be effi cient. More precisely, we will 
prove that the leaves would always be better off in a complete star, while for the center si of star 
Si this depends on a condition that interlinks the size of the network, the size of Si and the number 
of other stars.

Defi nition 25 Defi ne a multistar as a network G having a partition {Si, i ∈ I} of complete stars 
Si of center si such that each of the node v ∉ {si, i ∈ I} is linked to precisely all the {si, i ∈ I} and 
each of the center si is linked to precisely all the nodes in (Si \ {si}) ∪ {sj, j ∈ I\{i}}. We then say 
that G is a multistar with partition {Si, i ∈ I} of complete stars Si. The leaves of the multistar G 
are defi ned as the leaves of the Si, i ∈ I.

Figure 6.
Representation of a multistar. Only all the links of a single leaf, the node x, are represented in the picture for clarity.

s s s1 2 3

x

Multistars are thus a particular example of core-periphery

Theorem 26 Assume g > 2c and w
g c

6
1

+
. Let G be a strict Nash equilibrium. Then there is 

a threshold 
6

d
g c

w
g c

2
3

10 # -

+
- +b l  such that, if G has a partition {Si, i ∈ I} of complete 

stars, where si denotes the center of star Si, and such that, for all i ∈ I, we have:

 \N s S N w di i
w S

0

i

+ 2
z

+ +
^_ ^h i h'    (C)

then G is a multistar with partition {Si, i ∈ I} of complete stars.

The proof of Theorem 26 is provided in Annex 6.
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In the more general case where chains of intermediaries of arbitrary length are allowed, 
a similar theorem can be proved (Theorem 27), with a different threshold:

Theorem 27 Assume g > 2c and w
g c

6
2

+
. Let G be a strict Nash equilibrium. Then there is 

a threshold 
6

d g c w
g c12

10 #
+

+
- +b l  such that, if G has a partition {Si, i ∈ I} of complete 

stars, where si denotes the center of star Si, and such that, for all i ∈ I, we have:

 \N s S N w di i
w S

0

i

+ 2
z

+ +
^_ ^h i h'    (C)

then G is the unique network such that 1) it contains the {Si, i ∈ I} as subnetworks, and 2) each 
of the node v ∉ {si, i ∈ I} is linked to precisely all the {si, i ∈ I}. 3) Each center si is linked to 
precisely all the nodes in Si ∪ {sj, j ∈ I\{i}}.

The proof is similar to the one of Theorem 26 provided in the Annex, and thus omitted there.
Theorem 26 and Theorem 27 can be interpreted as follows: if each center has some large 

enough “private” market (larger than the d0 threshold, which is not larger than the upper bound 
given by the theorem), that is, a set of participants which can only be accessed using the center as 
an intermediary, then all the other leaves will decide to link to those centers, and to those centers 
only. Theorem 26 and Theorem 27 thus considerably restrict the number of possible structures in 
equilibrium.

Conversely to Theorem 26, it can be proved that this unique possible structure is 
indeed a Nash equilibrium if we add the well known and usual necessary condition that 

w
g c

n
g c

2
2

3

2
#

-
+ -

-
^ h , together with a suffi ciently high degree for each center of the stars:

Proposition 28 Let G be a multistar with partition {Si, i ∈ I} of complete stars Si. Assume 

moreover than d+(si) −|I| + 1 > d0 for all i ∈ I, and that 
g c

w
g c

n
g c

6 2
2

3

2
1 1

+ -
+ -

-
^ h . 

Then G is a strict Nash equilibrium.

The proof is provided in Annex 6.

4.0.1 Effi ciency comparison between stars and multistars

The previous section showed how multistars can endogenously arise from the linking up of 
stars, with each star having its previous links preserved, as formalised in Defi nition 24. Assume 
G is a multistar with partition {Si, i ∈ I} of complete stars Si of center si. When d+(si) − |I| + 1 > d0 
for all i, and g c

w
g c

n
g c

6 2
2

3

2
1 1

+ -
+ -

-
^ h , we know by Proposition 18 and Proposition 28 

that both the complete star and the multistar are strict Nash equilibrium. The question then arises 
to know which of the two networks is the most effi cient from an aggregate perspective (social 
welfare). This has clear policy implications, if we remember that the multistar arises naturally 
as an equilibrium when the re-organisation of the network obtained from various disjoint stars 
is left to the individual, profi t-maximising agents of each of the stars. We characterise parameter 
constellations for which, from an aggregate utility perspective, the star is always a more effi cient 
network than a multistar.

Theorem 29 Let h(c,w) = 5n/4−1−(n−2)w/c. Let i be the closest positive number to h(c,w). Then 
among all the multistars, the ones with precisely i centers are the most effi cient networks.
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The proof uses simple combinatorics arguments and the maximisation of the aggregate cost 
function. It is relegated to Annex 6. Theorem 29 has the obvious corollary:

Corollary 30 If h(c,w) < 1.5 then the star is more effi cient than any other multistar.

Theorem 29 indicates that the effi ciency of a multistar can be non-monotonous in the number 
of centers of the multistar and has interesting consequences. When the cost for building a link w 
increases, h(c,w) decreases, hence multistars with more centers become less effi cient compared 
to more concentrated structures. This is due to the larger number of edges that need to be built in 
a multistar compared to a star or to more concentrated multistar. When on the contrary the cost 
of using a link c increases, less concentrated structures, that is, multistars with larger number of 
centers, become more attractive, as in particular the direct links between multistars allow for cost-
reduction in inter-center trading.

To compare stars and multistars, we can also use the notion of Pareto-domination for unlabeled 
graphs. We will convene that a (unlabelled) network G Pareto-dominates another (unlabelled) 
network H if there is some way to relabel the vertices of G such that each node in the relabelled 
network is better off than in H5. A characterisation for stars to Pareto-dominate multistar in that 
sense is given in Theorem 34 in Annex 6.

Notice that the arising ineffi ciencies of multistars do not come from the fi xed investments 
spent for building links, but lie uniquely in the new individual incentives for reshaping the 
network that take into account the a preferred local structure and thus are not enough to lead to 
an effi cient resulting network. This fi nding has obvious policy implications, such as the potential 
benefi ts of the intervention of a “social planner” for re-arranging by itself the network or for 
acting as a catalyst for coordination among the different players, or for introducing incentives 
exogenous to the network that could help fostering a more effi cient aggregate network.

5. CONCLUSION

In this paper we introduced a specifi c rule for sharing profi ts along intermediary chains, 
which entails natural yet apparently complex payoffs and strategic behaviour from the network 
agents. We analyzed different general network structures, and derived the conditions for those 
networks to be stable – that is, no individual in the network would be better off by adding or 
deleting a link it has some power on. We defi ned a notion of graph partition that translates the 
existence of substructures preserved yet incorporated in a larger, aggregate network and studied 
the case of a particular type of core-periphery structure that can be seen as resulting from linking 
up a set of disjoint stars. This structure, or multistar, is a core-periphery network that allows 
for different vertex degrees between the different centers which form its core, and we prove 
it is stable for a large set of parameter constellations without having to resort to heterogeneity 
assumptions. We derived conditions under which stable multistars are not effi cient nor Pareto-
effi cient. This emphasises the theoretical need, in some instances, for a “social planner” to 
rearrange the network or at least act as a catalyst in the new network formation, in particular in 
complex networks obtained by linking pre-existing networks, even when these smaller networks 

5 It is easy to see how the notion of Pareto-domination for an unlabelled graphs may differ from the more common game theoretic Pareto-
domination. For example consider two identical complete stars of same size G and H, and assume their center earns more than their leaves. 
Suppose also that node 1 is the name of the center of G but the name of a leaf in H. Then H does not Pareto-dominate G as a labelled graph, since 
the node 1 is worse off in the network H than in the network G. But H does Pareto-dominate G as an unlabelled graph: there is a way to re-labell 
its vertices so that to obtain a labelled graph which Pareto-dominates H: any re-labelling where the center of G has the same name as the center 
of H will of course do.
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were, individually taken, effi cient. Further work is needed to characterise, in this context, the 
whole set of effi cient networks, as well as of stable networks and Nash equilibrium network, 
but this appears to be a diffi cult tasks, in particular when longer chains of intermediaries are 
allowed, because of the strategic considerations at play that take into account a larger portion of 
the topology of the network.

References

Bala V., Goyal S. (2000) A noncooperative model of network formation. Econometrica 68, no 5, pp. 1181–1229. 
Babus, A., (2013) Endogenous Intermediation in over-the-counter markets. Imperial College London working paper. 
Bellefl amme P., Bloch F. (2004) Market sharing agreements and collusive networks. International Economic 

Review 45 No 2, pp. 387–411. 
Buskens, V., van de Rijt, A. (2008) Strategic network formation with structural holes. American Journal of 

Sociology 114, pp. 37–407. 
Calvo-Armengol A., Jackson M.O. (2004) The effect of social networks on employment and inequality. American 

Economic Review 94, pp. 426–454. 
Craig, B., von Peter, G. (2014) Interbank tiering and money center banks. Journal of Financial Intermediation 

(Forthcoming) 
Veld D., van der Leij M., Hommes C. (2014) The formation of a core periphery structure in heterogeneous fi nancial 

networks, Tinbergen Institute Discussion Paper TI 2014-098/II. 
Dutta B., Ghosal S., Ray D. (2004) Farsighted network formation. Journal of Economic Theory 122, pp. 143–164. 
Fricke, D., Lux, T. (2014) Core-periphery structure in the overnight money market: Evidence from the e-MID trading 

platform. Computational Economics (Forthcoming). 
Gimbert J. (1999) On digraphs with unique walks of closed lengths between vertices. The Australasian Journal 

of Combinatorics 20, pp. 77–90. 
Goyal S., Joshi S. (2003) Networks of collaboration in oligopoly. Games and Economic Behavior 43, pp. 57–85. 
Goyal S., Vega-Redondo F. (2003) Network formation and social coordination. Working Papers 481, Queen Mary, 

University of London, School of Economics and Finance. 
Jackson M.O. (1996) A strategic model of social and economic networks. Journal of Economic Theory 71, pp. 44–74. 
Jackson M.O. (2002) The evolution of social and economic networks. Journal of Economic Theory 106, pp. 265–295. 
Jackson M.O., Wolinsky A. (1996) A strategic model of economic and social networks. Journal of Economic 

Theory 71, pp. (1) 44–74. 
Jackson M.O., Watts A. (2001) The existence of pair-wise stable networks. Seoul Journal of Economics 14, 

pp. 299–321. 
Kleinberg, J., Suri, S., Tardos, E., Wexler, T. (2008) Strategic network formation with structural holes. Proceedings 

9th ACM Conference on Electronic Commerce, pp. 480–489. 
Matutes C., Padilla A.J. (1994) Shared ATM networks and banking competition. European Economic Review 38, 

pp. 1113–1138. 
McAndrews J. J., Rob R. (1996) Shared ownership and pricing in a network switch. International Journal of 

Industrial Organization 14, pp. 727–745. 
Siedlarek J. (2011) Intermediation in Networks, Nota di Lavoro. FEEM Working Paper 42. 
Spence M. (1984) Cost reduction, competition, and industry performance. Econometrica 52 No 1, pp. 101–122. 
Vickers J. (1995) Competition and regulation in vertically related markets. Review of Economic Studies 62, pp. 1–17. 
Valletti T.M., Cambini C. (2005) Investments and network competition. The RAND Journal of Economics 36 No 2, 

pp.  446–467. 
Volgelsang I. (2003) Price regulation of access to telecommunications networks. Journal of Economic Literature 4, 

pp. 830–862.



Fabien Mercier • Journal of Banking and Financial Economics 1(5)2016, 39–63

© Faculty of Management University of Warsaw. All rights reserved. 

DOI: 10.7172/2353-6845.jbfe.2016.1.2

5555

APPENDIX
Proofs of theorems

Proposition 13 If w
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, then any stable network is strongly connected and its diameter 
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 being a stable 

network for which the bound is reached.
Proof. We fi rst prove that any stable network is strongly connected, and then derives the 

upperbound for its diameter. Let G be a stable network and suppose it is not strongly connected. 
Let A and B be two nodes such that there exists no path going from A to B. Building the edge 
(A,B) would incur a cost of w to node A but an additional profi t of at least 

g c

2

-
. Indeed, the trade 

with B itself already provides A with a profi t of 
g c

2

-
, to which may be added other intermediation 

fees from the possible admissible paths using the newly created edge (A,B). Since w
g c

2
1

-
 the 

node A would be willing to build (A,B). This contradicts the stability of the network G.
Consider a minimum path P of length Δ, P = A0, A1, A2, ..., AΔ and assume Δ ≥ 2 (the case 

where Δ ≤ 1 can be readily checked since for network with at least two nodes, w
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 since w > 0, while by assumption k0 ≥ 2.) Hence by minimality of P, 

A0AΔ is not an edge. Since w
g c

2
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-
, A0 would certainly be willing to pay for creating an edge 

towards AΔ if it could not use the minimum path A0 = A, A1, A2,..., AΔ for carrying out trades with 
AΔ, in which case we would have a contradiction with the minimality of P. Stability thus implies 
that this path can be used, hence that its length Δ is at most k0 − 1. Also, stability requires that 
the benefi ts derived by A0 from trading with AΔ by using this minimum path is no less than the 

benefi ts it would get if it chose to establish a direct link with AΔ, idem est that g c
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To prove that the directed circle attain the bound under the conditions mentioned, 
just consider that the condition for any vertex not to delete its single link is that 

k
cw

k

g k c
g c

11

k

n

i
k

n

k

n

22 2

1 r -=
- -

= +
== =

^
^

h
h // / . ■

Notice in passing that another (weaker) necessary condition for the minimum path to be able 
to carry out trade is that g − Δc > 0 ie Δ ≤ g/c. Hence the above results also contains the somehow 
simpler condition that Δ ≤ g/c.

Proposition 16 If :w
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then the empty network is the only strict stable network (and the only strict Nash equilibrium).
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Proof. Suppose g ≤ 2c. Without loss of generality k0 ≤ 2 and the assumption becomes that 
w

g c

2
$

-
. This implies that the direct gains for A from establishing a link towards B are 

g c
w

2
01

-
- . Hence no node A will ever choose to maintain a link. This results in a empty 

network.
Suppose g > 2c and that w > l0. It is enough to show that l0 is the maximal additional profi t 

a node A can hope for by establishing a link. Since the costs w are superior to l0 it will then 
follow that no node A will ever want to maintain a link, and that the empty network is the only 
Nash equilibrium for such parameter constellations. To show that l0 is an upper bound for the 
additional profi ts derived by establishing a single edge AB, we start from any graph G and prove 
by successive reductions than the additional profi t a node A can derive by establishing an edge 
AB cannot be more than the additional profi t node A would derive from edge AB in a particular 
graph K0, whose structure is known and in which A derives from AB an additional profi t less or 
equal to l0.

Additional profi ts for A derived from establishing a new edge AB stems from:
– the direct trade with B, which amounts to at most g c

2

-  – this upper-bound corresponding 
 to the case where there were no admissible path going from A to B prior to the establishment 

of the link (A,B).
– the profi ts from trades involving more than two intermediaries and using a chain P of 

intermediaries which fi nishes with the edge AB. Assume such chain contains more than four 
intermediaries, and let P =: C...DAB. Then A derives less profi ts in such a graph from trades 
CB than it would if C was a in-neighbours of A, the reason being it has to share the profi ts 
from trade CB with more intermediaries (for example, with D). Hence A obtains no less 
profi ts in the graph G′ obtained from G by adding all edges pointing towards A, than in G. 

These profi ts amounts to a profi t from these trades of less or equal to n
g c

2
2

3
-

-
^ h  in G′.

– the profi ts from trades involving more than two intermediaries and using a chain P of 
intermediaries which starts with the edge AB. Similarly, A obtains no less profi ts in the 
graph G′′ obtained from G′ by adding all edges starting from the node B, than in G′. These 

profi ts amounts to a profi t from these trades of less or equal to n
g c

2
2

3
-

-
^ h  in G′′.

– the profi ts from trades involving more than three intermediaries and using a chain P of 
intermediaries in which both A and B are strict intermediaries. Note these profi ts can only 
be positive if k0 > 3. Also, these profi ts are maximal when no node in V (G)\{A,B} is linked 
to another node of V (G)\{A,B}. Indeed, in such a confi guration any node in V (G)\{A,B} 
has to use the node A to carry out a trade with another node from V (G)\{A,B}. Hence, 
A obtains no less profi ts in the graph G0 obtained from G′′ by deleting all edges between two 

nodes in V (G)\{A,B} than in G′′. These profi ts amounts to n
g c

n2 13
4

3
k 30

-
-

- 2^ ^
^

h h
h
 

in G0.
It results from the above that n

g cg c
n

g c
n2 1

2
2 2

3

2
3

4

3
k 30

-
--

+ -
-

+ - 2^ ^ ^
^

h h h
h
 is the 

additional profi t derived by node A by establishing the link AB in the graph K0, and that it is an 
upper-bound for the additional profi t derived by node A by establishing the link AB in the initial 
graph G. Since this holds for all G, we have a general upper-bound. ■
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Proposition 19: Assume g > 2c. Then stable complete stars are also Nash equilibria.

Proof. Let G be a complete stable star.
By symmetry of the network, the center’s payoff depends uniquely on the number of links it 

creates towards the other nodes. Assume it creates k links, and let f be its payoff. Then

f k kw k
g c

n
g c

k k
g c

n k k
g c

2
1

2
1

3

2
1

3

2
= - +

-
+ -

-
+ -

-
+ - -

-
^ b ^ b ^ c ^ ch l h l h m h m" & ', 0 1

Indeed, the fi rst term between brackets is the costs of creating the links, the second term between 
brackets the profi ts from direct transactions and the third term between brackets the profi ts from 
intermediation. f(k) can be rewritten as:

 f k k w
g c

n
g c

n
g c

2
2

3

3
1

2
= - +

-
+ -

-
+ -

-
^ b ^ cc ^ bh l h mm h l

Since w
g c

n
g c

2
2

3

2
0$- +

-
+ -

-
^ ch m  the maximum is obtained for the maximum, 

value of k that is, n − 1, which means creating all possible links. Note that, in the above 
reasoning, instead of computing the total profi ts, we could have only computed the 

additional profi ts obtained by establishing k links, that is 
2

2
3

2
w

g c
n

g c
k - +

-
+ -

-
^ cc h mm. 

Because w
g c

n
g c

2
2

3

2
0$- +

-
+ -

-
^ ch m  the maximum is obtained for the maximum value 

of k, which is n − 1, and we conclude similarly. This approach being somehow simpler, we 
proceed in this fashion for the leaves, computing the additional benefi ts of having a given number 
of links in each case.

For computing one of the leaf A’s best-response we will distinguish two cases:
In the fi rst case the leaf A plays a strategy where it builds a link towards the center and k other 

links, for k ∈ {0, 1, ..., n − 2}. Its additional profi ts from building k edges towards other leaves is: 

k w
g c g c

2 3

2
- +

-
-

-
c m. Because 

g c
w

6
0#

+
- , the maximum is obtained for k = 0, which 

means building no link except towards the center.
In the second case it does not link to the center but to k other links, for k ∈ {0, 1, ..., n − 2}. If 

k ≥ 1 then the additional profi t obtained by A if it severs all existing links and connects to the center 

instead is: k w k
g c

k
g c

n k
g c g c

1 1
2

1
3

2
2

3

2

4

3
1 k 30

- - -
-

+ -
-

+ - -
-

-
-

2^ ^ ^ ^ c
^

h h h h m
h

. 
Indeed, the fi rst term represents the costs saved from having to pay only for a single link instead 
of k links, the second the loss of profi ts from direct trades towards other nodes, the third the 
compensating gains from indirect trade steping up to replace the previously direct trades, and 
the last term the gains in what was before, and still is, indirect trade (1(k0>3) is 1 if k0 > 3 

and 0 otherwise). This amounts to k w
g c

n k
g c g c

1
6

2
3

2

4

3
1 k 30

- -
+

+ - -
-

-
-

2^ b ^ c
^

h l h m
h

, 

a non-negative quantity since w
g c

6
0$-

+
 and 1

g c g c

3

2

4

3
0k 30

2
-

-
-

2^ h
. Hence strategies 

sending edges towards leaves and not towards the center are dominated by the strategy of just 
linking to the center.

The only check left is the suboptimality of not building any edge. Building a single edge 

towards the center would bring an additional profi t of 
2

w
g c

n
g c

2
2

3
0$- +

-
+ -

-
^ ch m , where 

g c

2

-
 stems from direct trade of the leaf A with the center and n

g c
2

2

3
-

-
^ ch m from indirect 

trades starting at A. This concludes the proof. ■
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Proposition 23: Assume g > 2c Then a d-regular network is stable if, and only if,

 d
g c g c

w
g c

d
g c

2
2

3 6 2
2

3

2
# #

-
+

+ -
+

-
c b cm l m

The proof of Proposition 23 relies both on Theorem 22 and on the following Lemma:

Lemma 31 Suppose g > 2c. Suppose N +(A) ∩ N −(B) ≠ ∅. Then node A earns, by creating the link 
(A,B), an additional profi t of

 (|N −(A)| − |N −(A) ∩ N −(B)| + |N +(B)| − |N +(A) ∩ N +(B)|) g c g c
w

2

3 6

-
+

+
-c m

Proof. The additional profi ts of creating such a link are (see Figure 7):
1) those derived from intermediating transactions using chains of type DAB where D is any 

node in N −(A) but not in N −(B): (|N −(A)| − |N −(A) ∩ N −(B)|) 
3

2g c-
c m,

2) those derived from intermediating transactions using chains of type ABC where C is any 

node in N +(B) but not in N +(A): (|N +(B)| − |N +(A) ∩ N −(B)|) 
3

2g c-
c m,

3) the additional profi t g c g c g c

3

2

2 6

-
-

-
=

+  of carrying out directly trades (A,B) instead 
 of using one strict intermediary.

The costs are w. The result follows. ■

Figure 7.
Illustration of the different chains of intermediaries alluded to in the proof

A B

D C

N(A) N(B)- +
\ N(B) N(A)

+
\-

We can now proceed to prove that the condition of Proposition 23 is necessary and suffi cient:

Sufi ciency: Suppose (A,B) is not an edge. Since G is a uninetwork we thus have a node C such 
that the path ACB allows to settle trades of type (A,B), and C ∈ N +(A) ∩ N −(B) ≠ ∅. We have, 
since |N −(A)| = d = |N +(B)|:

 (d − |N −(A) ∩ N −(B)| + d − |N +(A) ∩ N +(B)|) 
3

2g c g c g c g c
d w

3

2

66
2# #

- - +
+

+
+c c ^ bm m h l

Hence by Lemma 31 node A does not want to create this edge.

Suppose (A,B) is an edge. Deleting it would incur a gain of precisely w
g c g c

d
3

2

2
0#

-
-

-
- c m , 

since there is no other path than (A,B) that can be used by A to trade with B nor other path 
than ABC which can be used to trade with C for any C ∈ N +(B). Hence A would be worse off 
deleting (A,B). Hence the condition is suffi cient.
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Necessity: The most important part of the proof is indeed to establish the necessity of the 
condition, as it will allow us to conclude the network we are looking for does not exist. Indeed, 
for such a network to be stable it is necessary that no node A wants to create a link towards B 
for any AB ∉ E(G). Let A ∈ V (G). Let A′ be the unique node of G which is both an in-neighboor 
and an out-neighboor of A. The existence and unicity of A′ is assured by Theorem 22 and the 
defi nition of a line network of a complete network (Defi nition 21). Since d ≥ 2 there exists v in 
N −(A)\{A′}. Hence vA ∈ E(G).

Suppose N −(A) ∩ N −(v) ≠ ∅. Then there exists z in N −(A) ∩ N −(v) and zvA and zA are 
two distinct paths going from z to A, a contradiction with the defi nition of uninetwork. Hence 
N −(A) ∩ N −(v) = ∅. Similarly, we can show that N +(A) ∩ N +(v) = ∅. Since we suppose that the 
network G is stable, and that Av ∉ E(G), node A should not want to create an edge towards v. 

Applying then Lemma 31 to the pair (A, v) yields the condition 
g c

d
g c

w
3

2
2

6
#

-
+

+
c bm l .

For the other part of the inequality, notice again that if (A,B) is an edge in the network, deleting 

it would incur a gain of precisely 
g c

w
g c

d
3

2

2
2

-
-

-
- c m, since there is no other path than (A,B) 

that can be used by A to trade with B nor other path than ABC which can be used to trade with 
C for any C ∈ N +(B), nor other path than DAB which can be used by D ∈ N −(A) to trade with 
B. Assuming this quantity to be nonpositive is thus necessary. This concludes the proof of the 
necessity of the condition.

Theorem 26: Assume g > 2c and w
g c

6
2

+
. Let G be a strict Nash equilibrium. Then there is 

a threshold d
g c

w
g c

2
3

6
10 # -

-
+

+b l  such that, if G has a partition {Si, i ∈ I} of complete 
stars, where si denotes the center of star Si, and such that, for all i ∈ I, we have:

 |(N +(si) ∩ Si)\ 
w Siz

'  N +(w)| > d0   (C)

then G is a multistar with partition {Si, i ∈ I} of complete stars.
Proof. Let Si := N +(si)\ 

w Siz

'  N +(w) be the set of vertices of Si that can only be reached 
through si.

Let j ∈ I. Let v ∈ V (G)\{sj}.
a) Assume fi rst that v ∉ Sj. If v did not had a link towards sj, then creating it would provide v 

with an additional profi t of at least

 w
g c g c

S
g c

2 3

2

3

2
j- +

-
-

-
+

-
c m

 Indeed, w is the cost of establishing a new link towards sj, 
g c g c g c

2 3

2

6

-
-

-
=

+
 is 

 a lower bound for the additional gains from direct trade with sj and the last term represents 
the additional gains from intermediating trade with the |Sj| nodes that can only be accessed 
only through sj. It is thus a lower bound for the additional (strict) intermediation profi ts.

b) If v ∈ Sj then the additional profi t of creating a link to sj will be at least

 w
g c g c

S
g c

2 3

2
1

3

2
j- +

-
-

-
+ -

-
_ ci m
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 This lower bound is lower than in a) because v does not trade with itself in the 
model. This last lower bound, and hence both lower bounds, are positive as soon as 

:S
g c

w
g c

d
2

3
6

1i 02
-

-
+

+ =b l  which is the case by assumption. This contradicts 
 the stability of a Nash equilibrium. Hence every v ∈ V(G)\{sj} has a link to the center sj of 

Sj, and this result holds for all j ∈ I.
c) Let v ∈ V(G)\{si, i ∈ I}. Let ki be the number of links that v built towards V(Si). By the 

above, we already know that v is linked to si ∈ Si, hence ki ≥ 1. Assume by contradiction 
 that ki > 1 for at least one i ∈ I. Then k I 0i

i I

2-
d

/ . We can write the additional profi t of 

 node v derived by these extra-edges as a function of the ki:

 k I k I k Iw
g c g c

w
g c

2 3

2

6i
i I

i
i I

i
i I

- - -- +
-

-
-

= - +
+

d d d
b b

c
b

b
l l

m
l

l/ / /

 which is strictly negative since k I 0i
i I

2-
d

/  and w
g c

6
01- +

+
, a contradiction with 

 G Nash equilibrium. Hence ki = 1 for all i ∈ I and v sends only a single link towards each 
star Si, which is directed towards the center si of Si.

d) Let now i0 ∈ I and consider si0. The same argument as in (c), where for i ∈ I\{i0} we defi ne 
ki to be the number of links that si0 built towards V(Si), can be used by considering k

\
i

i I i0d " ,

/  
 instead of k i

i Id

/ , and I\{i0} instead of I. This concludes the proof. ■

Figure 8.
Illustration of the proof

s s

x

i j

0
d

Conversely, it can be checked that this unique possible structure is indeed a Nash equilibrium 

when we had the now well-known necessary condition that w
g c

n
g c

2
2

3

2
#

-
+ -

-
^ h , together 

with a suffi ciently high degree for each center of the stars.
Proposition 28: Let G be a multistar with partition {Si, i ∈ I} of complete stars Si. Assume 

moreover than d +(si) − |I| + 1 > d0 for all i ∈ I, and that g c
w

g c
n

g c

6 2
2

3

2
1 1

+ -
+ -

-
^ h . 

Then G is a strict Nash equilibrium.
Proof. The condition d +(si) − (|I| − 1) > d0 is precisely the condition (C) of the previous 

theorem once the overall structure has been deduced. The same arguments thus allow to prove 
that, given the other nodes strategies, each node strategy is a best-response among the strategies 
where the centers of the stars do maintain the links towards their leaves. More precisely, the 
additional benefi t of the center si of forming k links towards its d +(si) − (|I| − 1) leaves is, assuming 
other nodes do not deviate from the strategy profi le:
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2

1 1w
g c

k k k n k
g c

k
3

2
- +

-
+ - + - -

-
b ^ ^^l h hh

Indeed, −wk is the cost of maintaining these links, 
g c

k
2

-
 the additional profi t from direct trade, 

k k
g c

1
3

2
-

-
^ h  the intermediation profi ts from being the strict intermediary of trade between 

vertices both in N +(si) ∩ Si and k k
g c

n 1
3

2
- -

-
^ h  the intermediation profi ts from nodes outside 

Si towards nodes in N +(si) ∩ Si. This amounts to

 2
3

2
k n

g c
w

g c

2
-

-
- +

-
+ ^c h m

This additional benefi t is increasing with the number of links created towards the leaves if, and only 

if, w
g c

n
g c

2
2

3

2
1

-
+ -

-
^ h . By assumptions this condition is satisfi ed. Hence each center 

maintains a link towards each of its leaves at equilibrium.
Creating links towards leaves of other stars would result in a additional profi t of 

w
g c

6
01- +

+
 for the center si. Hence no center will maintain such links at equilibrium.

Any vertex (center or leaf) not in Sj linking towards the center sj of another star Sj will benefi t 
from an additional profi t of at least

 w
g c g c

S
g c

2 3

2

3

2
j- +

-
-

-
+

-
c m

while any vertex in Sj := N +(sj)\ 
w S jz

'  N +(w) linking towards the center sj of star Sj will benefi t 

from an additional profi t of at least

 w
g c

S
g c g c

2 3

2
1

3

2
j- +

-
-

-
+ -

-
_ ci m

The defi nition of l0 insures doing so brings additional benefi ts.
We are only left with checking that linking directly to another leaf is not benefi cial for 

a leaf, which is true since w
g c

0
6

1- +
+

. We can thus conclude that the network G is a Nash 
equilibrium. ■

Remark 32 We suspect the bound d0 of Theorem 26 and Theorem 27 not to be optimal, since it 
is increasing with w, which is contrary to the intuition that higher costs of building edges would 
make intermediation through an oligopolistic more profi table. Hence, there may be a better bound 
than the one given by the above theorem.

Remark 33 In case 3c < g which is the least to assume in the 4 intermediaries case, the upper 
bound for d0 is lower (thus better) in Theorem 26 than in Theorem 27.

Theorem 29: Let h(c,w) = 5n/4−1−(n−2)w/c. Let i be the closest positive number to h(c,w). 
Then among all the multistars, the ones with precisely i centers are the most effi cient networks.

Proof. First notice that since all the latent profi ts are realised, aggregate effi ciency ranking 
can be obtained by simply inverting the ranking of the costs of the links: the parameter g will thus 
drop from all the conditions derived here.

Simple combinatorics arguments allow to show that the number of edges in a multistar whose 
set of centers is I is simply n + |I| (n − 2). Each of this edge cost w to build.
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In a multistar there are (n − |I|). |I| + (n − |I|) + |I| (|I| − 1) = |I| (n − 2) + n direct trades. This is 
because there are (n−|I|). |I| direct trades from a leave to a center, (n−|I|) direct trades from a center 
to a leaf (as there is a unique edge from I to any of the n −|I| leaves), and |I| (|I|−1) edges linking 
the different centers of the multistar. Each of the direct trade is realised at a cost c.

In a multistar there are (n −|I|).(n − |I| − 1) indirect trades, which follow routes of length 2. 
This is because each leaf indirectly trade with each other leaf of the multistar. Each of the indirect 
trade costs 2c.

Hence the total costs associated to a multistar with set of centers I is:

 (n + |I| (n − 2))w + (|I| (n − 2) + n)c + (n − |I|).(n − |I| − 1)2c

Defi ne f(x) = (n + x(n − 2))w + (x(n − 2) + n)c + (n − x).(n − x − 1)2c. f is a polynomial of degree 
2 whose minimum is attained in h(c,w), hence the result. ■

Theorem 34 Assume c < w. Let G be a multistar with partition {Si, i ∈ I} of complete stars Si 
of center si and let j be such that |Sj| = max(|Si|, i ∈ I). Then a star with the same number of vertices 
as the multistar G Pareto-dominates G as soon as, for all i ≠ j, we have 6(g − c − w)(|I| + |Si| − 2) 
+ 3(g − c)(n − |I| − |Si| − 1) + 2(g − 2c){−2(n − 2) + (|Si| − 1)(2n − |Si| − i − 1)} > g − c + 
2(n − 2) g−2c3; and (|Sj| − 1)(n − |Sj|)(g − 2c) > 3(n − |Sj| − j + 2)w.

Proof. Leaves are better off in a star than in a multistar since in a multistar each leaf does 
|I| − 1 more direct trades than in a star which save the transaction costs of c(|I| − 1) but building 
those additional links are paid by the leaf concerned hence a cost of w(|I| − 1). This results in a net 
additional cost of (w − c)(|I| − 1) > 0 in a multistar compared to the star, for the same profi ts being 
realised.

The center of a star is better than one of the center of the multistar si if, and only if, 
(|Si| − 1)(n − |Si|)(g − 2c)/3 > (n − |Si| − I + 2)w. Indeed using simple combinatoric arguments, we 
see that the center of the multistar, compared to the center of a star: (a) misses (|Si| − 1)(n − |Si|) 
paths of length 2 which realise profi ts from one leaf of their star Si to leaves not in Si; (b) it builds 
(n − (|Si| − 1) − (|I| − 1)) less edges than the center of a star hence a saving of (n − |Si| − i + 2)w. 
Writing that profi t losses are higher than cost cutting benefi ts is equivalent to the second condition.

The profi t of a center of a star si is the sum of the cost of (a) its |I| + |Si| − 2 edges: −w(|I| + |Si| − 2), 
(b) the profi ts from direct trades to and from the |I| − 1 other centers and its |Si| − 1 leaves: 
2.(|I| + |Si| − 2) g c

2

- , (c) the direct profi t from trades from leaves outside Si: (n − |Si| − |I| + 1) 
g c

2

-
, 

and (d) the indirect profi ts. The indirect profi ts can be further decomposed into: (i) the indirect 
profi ts from intra-Si trades: (|Si| − 1)(|Si| − 2) 

g c

3

2-
, (ii) from trades from outside Si to a leaf 

in Si: (n − |Si|)(|Si| − 1) g c

3

2- , and (iii) from trades from a leaf in Si to a node outside: 

(|Si| − 1)(n − |Si| − |I| + 1) g c

3

2- . This results in an overall profi t of

 (g – c − w)(|I| + |Si| − 2) + 
g c

2

-
 (n − |I| − |Si| + 1) + 

g c

3

2-
 ((|Si| − 1)(|Si| − 2) + 

 + (|Si| − 1)(2n − 2|Si| − |I| + 1)

Writing that those profi ts are lower than those of the leaf of star is equivalent to the fi rst condition.
When the fi rst condition holds for all i ≠ j, all the centers of a multistar with the possible 

exception of sj (one of the center eaning the most profi ts) earn less profi ts in a multistar than 
the leaves of a simple star. Under the second condition we have that the center of the star earns 
more than sj. Since the leaves are better off in a star than being leaves in a multistar anyway, any 
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relabelling of the centers of one of the center of the multistar which earns the most into the center 
of the star, and of the other centers into the name of simple leaves of the star, shows that the star 
Pareto-dominate the multistar. ■

Remark 35 The profi t of a leaf x of the multistar G in Si is −w|I| + 
g c

2

-
 |I| + 2

g c

3

2-
 (n − |I| − 1) 

+ 
g c

2

-
2 + 

g c

3

2-
(|I| − 1). Indeed, −w|I| is the cost of the leaf x to maintain a link towards each 

of the centers, 
g c

2

-
 |I| the benefi ts from direct trade towards those centers, 2

g c

3

2-
 (n − |I| − 1) 

the benefi ts of trading to and from the n − |I| − 1 other leaves of the multistar, 
g c

2

-
 the benefi ts 

from direct trade from si and g c

3

2-  (|I| − 1) for indirect trades from the sj with j ≠ i to x. This can

be rewritten as |I|(−w + 
g c

2

-
 − 

g c

3

2-
) + 

g c

2

-
 + (2n − 3) 

g c

3

2-
. Since −w + 

g c

2

-
 − 

g c

3

2-
 

= −w + 
g c

6

+
 < 0, the lower |I|, the higher the profi ts for the leaf x. Economically, this expresses 

its preferences to only have to pay for one single link to get access to the whole network, in 
contrast to having to establish a link towards each center of a multistar. Note that, of course, by 
plugging |I| = 1 we fi nd again the profi t of a star of size n.


